必读内容📖
1️⃣ 什么!不知道如何改进模型⁉️ 本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行,性价比极高。
2️⃣ 找不到合适的模块⁉️ 所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到RT-DETR
中,并进行二次创新,新颖度高,创新度高,能够适应不同的任务场景。
3️⃣ 不确定自己改进的步骤、结果是否正确⁉️ 订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容,非常适合新手。
4️⃣ 团队内发表数篇SCI论文,熟悉完整的发表流程,已帮助多名同学成功发表论文。
专栏内容每周更新3-5篇,专栏实时评分97,全网最高,质量保证。专栏价格会随着文章数量的增加而增加,早订阅早优惠~
前60人限时优惠! 一次订阅,永久使用! 🎫 可开发票用于报销。
5️⃣ 专栏内容会持续更新,最近更新时间:2025-4-19。
全新的RT-DETR,更易发文!!!
RT-DETR-l 模型结构🌟
RT-DETR改进目录一览(持续更新中ing🚀)
项目介绍
在大家购买专栏后,加入学习群便可获得全部的程序文件,下方仅为列出的部分文件截图。在获取到文件后,只需按照将程序放在个人项目中即可运行,训练。群内有我录制的关于如何改进模型的视频,方便大家下载学习。可自行组合成不同的模块,实现针对你数据集的有效涨点。
项目环境版本如下(按照个人硬件配置即可)
- Python:3.8.10
- PyTorch:2.0.0
- CUDA:11.8
- 编辑器:VS Code
- Ultralytics:8.3.13
🎓— 基础篇— 🎓
1、RT-DETR训练自己的数据集(从代码下载到实例测试)🌟
2、RT-DETR改进前必看 - Ultralytics调参 1:1还原RT-DETR官方版本实验环境,更方便改进🌟
3、使用AutoDL训练RT-DETR等计算机视觉网络模型(AutoDL+Xftp+VS Code),附详细操作步骤🌟
4、RT-DETR目标检测模型性能评价指标详解,涉及混淆矩阵、F1-Score、IoU、mAP、参数量、计算量等,一文打尽所有评价指标🌟
5、RT-DETR训练前的准备,将数据集划分成训练集、测试集验证集(附完整脚本及使用说明)
6、RT-DETR模型结构详解,在Ultralytics项目中配置rtdetr-resnet18、rtdetr-resnet34🌟
7、RT-DETR论文阅读:DETRs Beat YOLOs on Real-time Object Detection
8、RT-DETR模型应用过程中的报错处理及疑问解答,涉及环境搭建、模型训练、模块改进、论文写作🌟
9、RT-DETR改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例🌟
10、RT-DETR在新版本的ultralytics项目包如何配置添加新的模块(base_modules、repeat_modules)🌟
🎓论文写作 — 丰富工作量🎓
1、论文必备 - RT-DETR输出模型每一层的耗时和GFLOPs,深入比较每一层模块的改进效果🌟
2、论文必备 - RT-DETR统计数据集中大、中、小目标数量,附完整代码和详细使用步骤🌟
3、论文必备 - 绘制RT-DETR模型在训练过程中,精准率,召回率,mAP_0.5,mAP_0.5:0.95,以及各种损失的变化曲线🌟
4、论文必备 - RT-DETR热力图可视化,支持指定模型,指定显示层,设置置信度,以及10种可视化实现方式🌟
5、论文必备 - RT-DETR训练前一键扩充数据集,支持9种扩充方法,支持图像和标签同步扩充🌟
6、论文必备 - RT-DETR计算COCO指标和TIDE指标,小目标检测必备,更全面的评估和指导模型性能,包含完整步骤和代码🌟
📈卷积层 — 发文常客📈
1、RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)🌟
2、RT-DETR改进策略【卷积层】| CVPR-2020 Strip Pooling 空间池化模块 处理不规则形状的对象 含二次创新🌟
3、RT-DETR改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息🌟
4、RT-DETR改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点🌟
5、RT-DETR改进策略【卷积层】| CVPR-2021 多样分支块DBB,替换下采样模块 并二次创新ResNetLayer
6、RT-DETR改进策略【卷积层】| RCS-OSA 通道混洗的重参数化卷积 二次创新ResNetLayer🌟
7、RT-DETR改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务🌟
8、RT-DETR改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对ResNetLayer进行二次创新🌟
9、RT-DETR改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核
10、RT-DETR改进策略【卷积层】| CVPR-2024 利用DynamicConv 动态卷积 结合ResNetLayer进行二次创新,提高精度🌟
11、RT-DETR改进策略【卷积层】| 引入注意力卷积模块RFAConv,关注感受野空间特征 助力RT-DETR精度提升🌟
12、RT-DETR改进策略【卷积层】| HWD,引入Haar小波变换到下采样模块中,减少信息丢失🌟
13、RT-DETR改进策略【卷积层】| NeurIPS-2022 ParNet 即插即用模块 二次创新ResNetLayer
14、RT-DETR改进策略【卷积层】| SAConv 可切换的空洞卷积 二次创新ResNetLayer
15、RT-DETR改进策略【卷积层】| GnConv:一种通过门控卷积和递归设计来实现高效、可扩展、平移等变的高阶空间交互操作
16、RT-DETR改进策略【卷积层】| ICCV-2023 引入Dynamic Snake Convolution动态蛇形卷积,改进ResNetLayer🌟
17、RT-DETR改进策略【卷积层】| 利用MobileNetv4中的UIB、ExtraDW优化ResNetLayer🌟
18、RT-DETR改进策略【卷积层】| ICCV-2023 LSK大核选择模块 包含ResNetLayer二次独家创新🌟
19、RT-DETR改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用🌟
20、RT-DETR改进策略【卷积层】| CVPR-2023 SCConv 空间和通道重建卷积:即插即用,减少冗余计算并提升特征学习🌟
21、RT-DETR改进策略【卷积层】| CVPR-2024 PKI Module 获取多尺度纹理特征,适应尺度变化大的目标🌟
22、RT-DETR改进策略【卷积层】| RFEM:感受野增强模块, 解决多尺度目标检测中因感受野不足导致的小目标信息丢失问题🌟
🍀Backbone/主干网络🍀
1、RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合🌟
2、RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
3、RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式🌟
4、RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)🌟
5、RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)🌟
6、RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标🌟
7、RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力🌟
8、RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题🌟
🔥Conv和Transformer — 发文热点🔥
1、RT-DETR改进策略【Conv和Transformer】| ICCV-2023 iRMB 倒置残差移动块 轻量化的注意力模块🌟
2、RT-DETR改进策略【Conv和Transformer】| CVPR-2022 Deformable Attention Transformer 可变形注意力 动态关注目标区域🌟
3、RT-DETR改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新AIFI)🌟
4、RT-DETR改进策略【Conv和Transformer】| GRSL-2024最新模块 卷积和自注意力融合模块 CAFM 减少图像中的噪声干扰🌟
5、RT-DETR改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新)
6、RT-DETR改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势🌟
7、RT-DETR改进策略【Conv和Transformer】| CVPR-2024 Single-Head Self-Attention 单头自注意力🌟
8、RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能🌟
9、RT-DETR改进策略【Conv和Transformer】| CVPR-2021 Bottleneck Transformers 简单且高效的自注意力模块
10、RT-DETR改进策略【Conv和Transformer】| 2024 AssemFormer 结合卷积与 Transformer 优势,弥补传统方法不足🌟
11、RT-DETR改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用🌟
12、RT-DETR改进策略【Conv和Transformer】| ECCV-2024 Histogram Transformer 直方图自注意力 适用于噪声大,图像质量低的检测任务🌟
13、RT-DETR改进策略【Conv和Transformer】| HiLo注意力机制 通过分离处理图像的高频和低频信息,高效处理图像特征🌟
🔥RT-DETR和Mamba — 最新热点🔥
1、RT-DETR改进策略【RT-DETR和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制🌟
2、RT-DETR改进策略【RT-DETR和Mamba】| 替换骨干 Mamba-RT-DETR-T !!! 最新的发文热点🌟
3、RT-DETR改进策略【RT-DETR和Mamba】| 替换骨干 Mamba-RT-DETR-B !!! 最新的发文热点🌟
4、RT-DETR改进策略【RT-DETR和Mamba】| 替换骨干 Mamba-RT-DETR-L !!! 最新的发文热点🌟
5、RT-DETR改进策略【RT-DETR和Mamba】| Mamba-UNet (近期补充)🌟
🍀模型轻量化 — 加速推理🍀
1、RT-DETR改进策略【模型轻量化】| MoblieNet V4:2024 轻量化网络 移动生态系统的通用模型🌟
2、RT-DETR改进策略【模型轻量化】| MoblieNet V3:基于搜索技术和新颖架构设计的轻量型网络模型🌟
3、RT-DETR改进策略【模型轻量化】| ShuffleNet V1:一个用于移动设备的极其高效的卷积神经网络
4、RT-DETR改进策略【模型轻量化】| Shufflenet V2:通过通道划分构建高效网络,高效的CNN架构设计的实用指南🌟
5、RT-DETR改进策略【模型轻量化】| StarNet:CVPR-2024 超级精简高效的轻量化模块🌟
6、RT-DETR改进策略【模型轻量化】| MobileViT V1:高效的信息编码与融合模块,获取局部和全局信息
7、RT-DETR改进策略【模型轻量化】| GhostNet V1:基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
8、RT-DETR改进策略【模型轻量化】| GhostNet V2:NeurIPS-2022 Spotlight 利用远距离注意力增强廉价操作🌟
9、RT-DETR改进策略【模型轻量化】| RepViT:CVPR-2024 轻量级的Vision Transformers架构🌟
10、RT-DETR改进策略【模型轻量化】| FasterNet: CVPR-2023 高效快速的部分卷积块🌟
11、RT-DETR改进策略【模型轻量化】| VanillaNet:华为的极简主义骨干网络🌟
12、RT-DETR改进策略【模型轻量化】| EfficientViT:ICCV 2023 用于高分辨率密集预测的多尺度线性关注🌟
13、RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
14、RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构🌟
15、RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛🌟
16、RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络🌟
17、RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤🌟
18、RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型🌟
19、RT-DETR改进策略【模型轻量化】| EMO:ICCV 2023,结构简洁的轻量化自注意力模型🌟
📈注意力机制篇 — 发文必备📈
1、RT-DETR改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度🌟
2、RT-DETR改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化🌟
3、RT-DETR改进策略【注意力机制篇】| ICCV2023 聚焦线性注意力模块 Focused Linear Attention 聚焦能力与特征多样性双重提升,含二次创新🌟
4、RT-DETR改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含HGBlock二次创新)🌟
5、RT-DETR改进策略【注意力机制篇】| Mixed Local Channel Attention (MLCA) 同时融合通道、空间、局部信息和全局信息的新型注意力🌟
6、RT-DETR改进策略【注意力机制篇】| SENet V2 优化SE注意力机制,聚合通道和全局信息🌟
7、RT-DETR改进策略【注意力机制篇】| CVPRW-2024 分层互补注意力混合层 H-RAMi 针对低质量图像的特征提取模块🌟
8、RT-DETR改进策略【注意力机制篇】| CVPR-2023 FSAS 基于频域的自注意力求解器 结合频域计算和卷积操作 降低噪声影响🌟
9、RT-DETR改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新HGBlock、ResNetLayer🌟
10、RT-DETR改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像🌟
11、RT-DETR改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力(含HGBlock二次创新)
12、RT-DETR改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含HGBlock二次创新)
13、RT-DETR改进策略【注意力机制篇】| 2024 SCI TOP FCAttention 即插即用注意力模块,增强局部和全局特征信息交互🌟
14、RT-DETR改进策略【注意力机制篇】| 2024 SCSA-CBAM 空间和通道的协同注意模块(含HGBlock二次创新)🌟
15、RT-DETR改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制🌟
16、RT-DETR改进策略【注意力机制篇】| 2023 MCAttention 多尺度交叉轴注意力 获取多尺度特征和全局上下文信息🌟
17、RT-DETR改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用
18、RT-DETR改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度🌟
19、RT-DETR改进策略【注意力机制篇】| ICML-2021 引入SimAM注意力模块(一个简单的,无参数的卷积神经网络注意模块)🌟
20、RT-DETR改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
21、RT-DETR改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制
22、RT-DETR改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率🌟
🚀损失函数篇🚀
1、RT-DETR改进策略【损失函数篇】| 利用MPDIoU,加强边界框回归的准确性
2、RT-DETR改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题🌟
3、RT-DETR改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6
4、RT-DETR改进策略【损失函数篇】| 通过辅助边界框计算IoU提升检测效果(Inner_GIoU、Inner_DIoU、Inner_CIoU、Inner_EIoU、Inner_SIoU)
5、RT-DETR改进策略【损失函数篇】| Shape-IoU:考虑边界框形状和尺度的更精确度量🌟
6、RT-DETR改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归 (Focaler-DIoU、Focaler-GIoU、Focaler-CIoU)
7、RT-DETR改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度🌟
8、RT-DETR改进策略【损失函数篇】| 将激活函数替换为带有注意力机制的激活函数 ARelu🌟
9、RT-DETR改进策略【损失函数篇】| WIoU v3:针对低质量样本的边界框回归损失函数🌟
🚀Neck — 加强特征融合🚀
1、RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络🌟
2、RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度🌟
3、RT-DETR改进策略【Neck】| 2023 显式视觉中心EVC 优化特征提取金字塔,对密集预测任务非常有效🌟
4、RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合🌟
5、RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计🌟
6、RT-DETR改进策略【Neck】| 有效且轻量的动态上采样算子:DySample
7、RT-DETR改进策略【Neck】| 使用CARAFE轻量级通用上采样算子
8、RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络🌟
9、RT-DETR改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测🌟
10、RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题🌟
11、RT-DETR改进策略【Neck】| ArXiv 2023,基于U - Net v2中的的高效特征融合模块:SDI(Semantics and Detail Infusion)🌟
12、RT-DETR改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力🌟
13、RT-DETR改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题🌟
14、RT-DETR改进策略【Neck】| SEAM:分离和增强注意模块,解决复杂场景下的小目标遮挡问题🌟
🚀Head/检测头🚀
1、RT-DETR改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)🌟
2、RT-DETR改进策略【Head】| 添加专用于小目标的检测层 P2 附YOLO系列的检测头变化详解🌟
🚀SPPF/空间金字塔池化🚀
1、RT-DETR改进策略【SPPF】| NeuralPS-2022 Focal Modulation : 使用焦点调制模块优化空间金字塔池化SPPF🌟
2、RT-DETR改进策略【SPPF】| SimSPPF,简化空间金字塔池化设计,提高计算效率
3、RT-DETR改进策略【SPPF】| 将特征金字塔池化修改为:SPPELAN ,多尺度特征提取与高效特征融合🌟
4、RT-DETR改进策略【SPPF】| 将特征金字塔池化修改为:SPPCSPC,提升模型的特征提取能力和计算效率🌟
🚀特殊场景 — 小目标改进🚀
1、RT-DETR改进策略【小目标改进】| Shape-NWD:融合改进,结合Shape-IoU和NWD 更好地适应小目标特性🌟
2、RT-DETR改进策略【小目标改进】| 2024-TOP 自适应阈值焦点损失(ATFL)提升对小目标的检测能力🌟
3、RT-DETR改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLO系列的检测头变化详解🌟
4、RT-DETR改进策略【小目标改进】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度🌟
5、RT-DETR改进策略【小目标改进】| NWD损失函数,提高小目标检测精度🌟
6、RT-DETR改进策略【小目标改进】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度🌟
7、RT-DETR改进策略【小目标改进】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度🌟
8、RT-DETR改进策略【小目标改进】| SPD-Conv 针对小目标和低分辨率图像的检测任务🌟
9、RT-DETR改进策略【小目标改进】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力🌟
10、RT-DETR改进策略【小目标改进】| RFEM:感受野增强模块, 解决多尺度目标检测中因感受野不足导致的小目标信息丢失问题🌟
11、RT-DETR改进策略【小目标改进】| SEAM:分离和增强注意模块,解决复杂场景下的小目标遮挡问题🌟
🎓独家融合改进 — 达到论文发表要求🎓
1、RT-DETR改进策略【独家融合改进】| Mamba-YOLO+SDI 增强长距离依赖,聚焦目标特征🌟
2、RT-DETR改进策略【独家融合改进】| 模型轻量化二次改进:StarNet + FreqFusion,极限降参,适用专栏内所有轻量化模型🌟
3、RT-DETR改进策略【独家融合改进】| MobileNetV4+BiFPN,轻量化+加权特征融合,轻松实现降参涨点🌟
4、RT-DETR改进策略【独家融合改进】| RepVit+ASF-YOLO,轻量提点,适用专栏内所有的骨干替换🌟
5、RT-DETR改进策略【独家融合改进】| SPD-Conv+PPA 再次提升模型针对小目标的特征提取能力🌟
6、RT-DETR改进策略【独家融合改进】| AssemFormer + HS-FPN 减少目标尺度变化影响,增加多尺度的学习能力🌟
7、RT-DETR改进策略【独家融合改进】| U-Net V2 + 小目标检测头,加强跨尺度的上下文特征融合,提高小目标检测能力🌟
🔗模型剪枝🔗
待续~
🔗模型蒸馏🔗
待续~