一、本文介绍
本文记录的是基于RepVit的YOLOv11轻量化改进方法研究。RepVit
通过分离的token mixe
和channel mixer
减少推理时的计算和内存成本,同时减少扩展比率并增加宽度,降低延迟,并通过加倍通道来弥补参数大幅减少的问题,提高了准确性。在此基础之上,将YOLOv11
的颈部网络改进成ASF-YOLO
的结构,使模型能够有效的融合多尺度特征,捕获小目标精细信息,并根据注意力机制关注小目标相关特征,显著提高模型精度。
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进