YOLOv8改进策略【损失函数篇】| AAAI 2025 SD Loss,基于目标尺度动态调整尺度损失和位置损失的影响系数,减少 IoU 标签波动

背景

在红外小目标检测任务里,基于交并比的损失存在波动问题,像边界框(BBox)标签的IoU损失波动最高可达86%,较小目标的IoU损失稳定性更差,严重影响模型稳定性和回归效果。

同时,现有损失函数没有充分考虑不同目标尺度下对尺度和位置的敏感度差异,小目标的这种不稳定性更明显,并且掩码标签的位置损失在处理漏检物体时难以收敛,容易产生误报。

这些问题限制了模型在不同尺度目标上的检测性能,为解决这些问题,提出了SD Loss(Scale-based Dynamic Loss) 损失函数。


专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv8改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值