背景
在红外小目标检测任务里,基于交并比的损失存在波动问题,像边界框(BBox)标签的IoU损失波动最高可达86%,较小目标的IoU损失稳定性更差,严重影响模型稳定性和回归效果。
同时,现有损失函数没有充分考虑不同目标尺度下对尺度和位置的敏感度差异,小目标的这种不稳定性更明显,并且掩码标签的位置损失在处理漏检物体时难以收敛,容易产生误报。
这些问题限制了模型在不同尺度目标上的检测性能,为解决这些问题,提出了SD Loss(Scale-based Dynamic Loss) 损失函数。
专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进