穷举是用计算机求解问题最常用的方法之一,常用来解决那些通过公式推导、规则演绎的方法不能解决的问题。采用穷举法求解一个问题时,通常先建立一个数学模型,包括一组变量、以及这些变量需要满足的条件。问题求解的目标就是确定这些变量的值。根据问题的描述和相关的知识,能为这些变量分别确定一个大概的取值范围。在这个范围内对变量依次取值,判断所取的值是否满足数学模型中的条件,直到找到全部符合条件的值为止。
穷举法(枚举法)的基本思想是:列举出所有可能的情况,逐个判断有哪些是符合问题所要求的条件,从而得到问题的全部解答。
它利用计算机运算速度快、精确度高的特点,对要解决问题的所有可能情况,一个不漏地进行检查,从中找出符合要求的答案。
用穷举算法解决问题,通常可以从两个方面进行分析。
(1)问题所涉及的情况:问题所涉及的情况有哪些,情况的种数可不可以确定。把它描述出来。应用穷举时对问题所涉及的有限种情形必须一一列举,既不能重复,也不能遗漏。重复列举直接引发增解,影响解的准确性;而列举的遗漏可能导致问题解的遗漏。
(2)答案需要满足的条件:分析出来的这些情况,需要满足什么条件,才成为问题的答案。把这些条件描述出来。
只要把这两个方面分析好了,问题自然会迎刃而解。
穷举通常应用循环结构来实现。在循环体中,根据所求解的具体条件,应用选择结构实施判断筛选,求得所要求的解。
穷举法的程序框架一般为:
cnt=0; // 解的个数初值为0
for(k=<区间下限>;k<=<区间上限>;k++) // 根据指定范围实施穷举
if (<约束条件>) // 根据约束条件实施筛选
{
cout<<(<满足要求的解>); // 输出满足要求的解
cnt++; // 统计解的个数
}