大青呐
码龄6年
关注
提问 私信
  • 博客:173,210
    173,210
    总访问量
  • 82
    原创
  • 2,342,320
    排名
  • 75
    粉丝
  • 0
    铁粉

个人简介:精神的锐利不可能产生于舒适的环境中。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2018-07-09
博客简介:

qq_42646885的博客

查看详细资料
个人成就
  • 获得95次点赞
  • 内容获得33次评论
  • 获得656次收藏
  • 代码片获得703次分享
创作历程
  • 3篇
    2021年
  • 1篇
    2020年
  • 75篇
    2019年
  • 4篇
    2018年
成就勋章
TA的专栏
  • leetcode算法
    3篇
  • 深度学习
    1篇
  • CTF-Web实验
    4篇
  • 白帽子讲Web安全之学习笔记
    8篇
  • CTF-Web实验
    9篇
  • Web安全
    2篇
  • Python学习
    8篇
  • 逆向
    6篇
  • Python web
    4篇
  • 汇编
    8篇
  • 网络安全
    2篇
  • 机器学习
    12篇
  • PWN
    3篇
  • 工具学习
    1篇
  • HTTP
    1篇
兴趣领域 设置
  • 数据结构与算法
    排序算法
  • 大数据
    hadoophivespark
  • 前端
    javascript
  • 人工智能
    tensorflowmxnetpytorchnlpscikit-learn聚类集成学习分类回归
  • 微软技术
    typescript
  • 网络空间安全
    系统安全web安全安全架构
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

174人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

week3 leetcode面试题 [16.26. 计算器] [739.每日温度]

16.26. 计算器参考方法:https://blog.csdn.net/Changxing_J/article/details/110313298class Solution: def calculate(self, s: str) -> int: marks = {"+", "-", "*", "/"} stack = [] # 多项式栈 now_num = "" # 当前数字 last_mark = "+"
原创
发布博客 2021.04.10 ·
288 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

week2 leetcode面试题 [01.03. 两数相加] [206. 反转链表]

2. 两数相加给你两个非空 的链表,表示两个非负的整数。它们每位数字都是按照逆序的方式存储的,并且每个节点只能存储一位数字。请你将两个数相加,并以相同形式返回一个表示和的链表。你可以假设除了数字 0 之外,这两个数都不会以 0开头。解题思路:先创建一个新链表的头节点遍历l1和l2两个链表,只要有一个链表还没有遍历到末尾,就继续遍历每次遍历生成一个当前节点l3的下一个节点,其值为两链表对应节点的和再加上当前节点l3产生的进位carry更新进位后的当前节点l3的值...
原创
发布博客 2021.03.28 ·
353 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

week1 leetcode面试题 [01.03. URL化] [1528. 重新排列字符串]

01.03. URL化URL化。编写一种方法,将字符串中的空格全部替换为%20。假定该字符串尾部有足够的空间存放新增字符,并且知道字符串的“真实”长度。(注:用Java实现的话,请使用字符数组实现,以便直接在数组上操作。)解题:class Solution: def replaceSpaces(self, S: str, length: int) -> str: res = '' for i in range(length):
原创
发布博客 2021.03.13 ·
412 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

集成学习讲解汇报.pptx

发布资源 2020.07.28 ·
pptx

深度学习PyTorch | 总结

过拟合、欠拟合1、在数据不够多的时候,k折交叉验证是一种常用的验证方法。2、过拟合是指训练误差达到一个较低的水平,而泛化误差依然较大。欠拟合是指训练误差和泛化误差都不能达到一个较低的水平。发生欠拟合的时候在训练集上训练误差不能达到一个比较低的水平,所以过拟合和欠拟合不可能同时发生。3、模型复杂度低容易导致欠拟合;训练数据集小容易导致过拟合;过拟合还可以使用权重衰减和丢弃法来缓解,即...
原创
发布博客 2020.02.18 ·
965 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

恶意代码检测

恶意代码定义恶意代码也称为恶意软件,是对各种敌对和入侵软件的概括性术语。包括各种形式的计算机病毒、蠕虫、特洛伊木马、勒索软件、间谍软件、广告软件以及其他的恶意软件。恶意代码的种类计算机病毒:指寄居在计算机系统中,在一定条件下被执行会破坏系统、程序的功能和数据,影响系统其他程序和自我复制。蠕虫:也算是一种病毒,它具有自我复制能力并通过计算和网络的负载,消耗有限资源。特洛伊木马:也...
翻译
发布博客 2019.12.15 ·
4482 阅读 ·
0 点赞 ·
1 评论 ·
22 收藏

机器学习 | 简单线性回归和最小二乘法

最近一段时间在学习机器学习算法,看了一些视频,打算整理下做成笔记,方便以后看。线性回归:能够用一个直线比较精确地描述数据之间的关系,当出现新的数据的时候,能够预测出一个简单的值。线性回归算法主要来解决回归问题,本身思想简单,容易实现,是许多强大的非线性墨香的基础,而且结果比较直观好解释。目标:寻找一条直线,最大程度的“拟合”样本特征和样本输出标记之间的关系。如图假设找到了最佳拟合直...
原创
发布博客 2019.10.23 ·
333 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

一道CTF题:sql爆破

题目:http://web.jarvisoj.com:32780/^HT2mCpcvOLf/index.php?id=-1'打开网页:说明存在sql注入。尝试了一些常见的绕过操作都不行,过滤了注释--,空格,and,select等。尝试用/*11*/绕过http://web.jarvisoj.com:32780/%5EHT2mCpcvOLf/index.php?id=...
原创
发布博客 2019.08.22 ·
624 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

SQL复习笔记总结

SQL((Structured Query Language))是用于访问和处理数据库的标准计算机语言。1、SQL面向数据库执行查询【1】SQLselect:SELECT 语句用于从表中选取数据,结果被存储在一个结果表中(称为结果集)。select 列名称 from 表名称select 列名称1,列名称2 from 表名称select * from 表名称【2】SQ...
原创
发布博客 2019.08.15 ·
374 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

Web安全之机器学习 | 朴素贝叶斯算法

1、朴素贝叶斯算法概述贝叶斯分类是一系列分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。其中朴素贝叶斯(Naive Bayesian,NB)是其中应用最广泛的分类算法之一。通常企业和大型邮件服务商都会提供拦截垃圾的功能,最常见的一种算法就是基于朴素贝叶斯的文本分类算法,大体思路是通过学习大量的垃圾邮件和正常邮件样本,让朴素贝叶斯训练出文本分类模型。NB算法是基于贝叶斯定理...
原创
发布博客 2019.08.13 ·
491 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Web安全之机器学习 | 决策树与随机森林算法

决策树算法1、决策树算法概述决策树表现了对象属性与对象值之间的一种映射关系。决策树中每个节点表示某个对象,而每个分叉路径则代表某个可能的属性值,每个叶节点则对应从根节点到该叶节点所经历的路径所表示的对象值。决策树可以用于数据分类也可以用于预测。例如:from sklearn import treeX = [[0, 0], [1, 1]]Y = [0, 1]clf = t...
原创
发布博客 2019.08.12 ·
881 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

K近邻算法检测异常操作及病毒

1、简介K邻近算法(K-Nearest Neighbor,KNN),就是K个最近的邻居的意思,就是说每个样本都可以用它最接近的K个邻居来代表。KNN算法的核心是,如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。KNN常用的算法:Brute Force、K-D Tree、Ball Tree.2、一个简单示例用...
原创
发布博客 2019.08.11 ·
1647 阅读 ·
2 点赞 ·
1 评论 ·
14 收藏

ImportError: cannot import name 'cross_validation'解决

在学习KNN算法检测异常操作,在效果验证中,使用交叉验证时,调用了cross_validation函数,结果在编译时报错。经过查看知道sklearn在0.02版本后改变了cross_validation函数(https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.htm...
原创
发布博客 2019.08.11 ·
5904 阅读 ·
3 点赞 ·
1 评论 ·
6 收藏

XSS 攻击与防御

XSS(Cross Site Scripting)XSS,全称Cross Site Scripting,即跨站脚本攻击,也是一种注入攻击,是指攻击者在页面注入恶意的脚本代码,当受害者访问该页面时,恶意代码会在浏览器上运行。根据恶意代码是否存储在服务器中,XSS可以分为存储型的XSS与反射型的XSS。还有一种特殊的基于DOM的XSS(DOM Based XSS)1、反射型XSS又称为非持...
原创
发布博客 2019.08.05 ·
585 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Web安全之机器学习 | 数据集和特征值提取

数据集1、KDD 99数据KDD是知识发现与数据挖掘(Knowledge Discovey and Data Mining)的简称。2、HTTP DATASET CSIC 2019HTTP DATASET CSIC 2019包含大量标注过的针对web服务器的36000个正常请求及25000个攻击请求,攻击类型包括sql注入、缓冲区溢出、信息泄露、文件包含、xss等,被广泛用于WAF...
原创
发布博客 2019.08.05 ·
2808 阅读 ·
2 点赞 ·
0 评论 ·
14 收藏

Web安全之机器学习 | 学习工具之Python和TensorFlow

Python在机器学习领域的优势:1、NumPy:NumPy是Python的一种开源的数组计算扩展。可用来存储和处理大型矩阵。提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理、以及精密的运算库,专门为进行严格的数字处理。NumPy包括:一个强大的N维数组对象Array;比较成熟的(广播)函数库;用于整合C/C++和Fortran代码的工具包;实用的线性代数、傅...
原创
发布博客 2019.08.01 ·
308 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CTF | PWN练习之环境变量继承

实验描述: 主机/home/test/3目录下有一个pwn3程序,这个程序会对进程中名为HEETIAN的环境变量的值进行处理,通过构造特定的环境变量参数数据可以对程序发起溢出攻击,成功会提示Congratulations, you pwned it.,失败则会提示Please try again.的提示信息。注意:如果没有设置HEETIAN这个环境变量,那么运行程序后将输出Plea...
原创
发布博客 2019.07.29 ·
811 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

HTTP数据包详解

1. HTTP报文格式 HTTP由请求和响应两部分组成,所以对应的也有两种报文格式。下面分别介绍HTTP请求报文格式和HTTP响应报文格式。 HTTP请求报文格式 以上表格中,第1行为“请求行”,第2、3、4行为“请求头部”,第5行为空行,第6行为“请求正文”。分别介绍这4部分: 1.请求行:由3部分组成,分别为:请求方法、URL(见...
原创
发布博客 2019.07.28 ·
11587 阅读 ·
7 点赞 ·
0 评论 ·
74 收藏

firefox浏览器安装firebug、Tamper Data(解决:老版本换新版本)

之前安装的firefox是最新版本,在“附加组件”添加插件,查找不到firebug。于是卸载了,重新安装了37.0版本,下载链接:http://ftp.mozilla.org/pub/firefox/releases/安装时有个更新安装的对勾选择,将对勾取消掉。安装后,在选项——>高级——>更新——>选择不检查更新。在组件添加中还是搜索不到firebug和Tam...
原创
发布博客 2019.07.28 ·
3298 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

机器学习笔记 | multivariate linear regression(多元线性回归)

设置编程环境Octave是一个自由的,开放源码可以在许多平台的应用。它有一个文本界面和实验的图形之一。MATLAB是专有软件,但免费的试用许可到MATLAB在线注册账户。MATLAB在线:https://matlab.mathworks.com/在windows安装Octave: http://wiki.octave.org/Octave_for_Microsoft_Windows...
原创
发布博客 2019.07.28 ·
3380 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏
加载更多