齐次除法(透视除法)的意义

透视除法用于将三维坐标转换为二维显示,确保在w不等于1时通过除以w修正坐标。当w为1时,三维坐标点转换成四维齐次坐标点等价,否则通过除以w映射回w=1平面,形成二维点(x/w, y/w)。此概念可扩展到更高维度。" 79986340,5674660,深入理解Linux Nginx配置文件nginx.conf,"['Linux', 'Nginx', 'Web服务器', '网络服务器', '配置文件']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                          **

齐次除法(透视除法)的意义

我们首先要搞清楚,如何将一个三维坐标点(x, y, z)表示成一个等价的四维齐次坐标
(x, y, z, w)。
根据下列的矩阵变换:
在这里插入图片描述
可知,只有当W为1的时候,这个三维坐标转换是等价的,因为这个时候我们才能保证位移的量是正确的,所以(x, y, z, 1)可以等价表示三维的坐标点。如果当W为0时,则没有位移(位移和0相乘得0),所以(x, y, z, 0)可以等价表示三维的向量。因为坐标点和向量井水不犯河水,所以这里也同时排除了坐标点除0的情况。
结论:只有当W=1时,三维坐标点转换成四维齐次坐标点才是等价的,所以一旦发现W不等于1时,就要让W等于1!
<注:此处的概念可以扩展到N维,如二维齐次坐标(x, y, w)中的W的表示,所影响的二维坐标的性质>

那如果W != 1,要如何才能让W=1呢?接下来请看下图。下图中,是一个2D齐次坐标系(即X轴Y轴W轴所构成的三维空间),假设有一平面平行于X和Y轴,且W坐标为1,我们暂且把这个平面叫做W=1平面。在W=1平面上有一点(x,y),二

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值