**
齐次除法(透视除法)的意义
我们首先要搞清楚,如何将一个三维坐标点(x, y, z)表示成一个等价的四维齐次坐标
(x, y, z, w)。
根据下列的矩阵变换:
可知,只有当W为1的时候,这个三维坐标转换是等价的,因为这个时候我们才能保证位移的量是正确的,所以(x, y, z, 1)可以等价表示三维的坐标点。如果当W为0时,则没有位移(位移和0相乘得0),所以(x, y, z, 0)可以等价表示三维的向量。因为坐标点和向量井水不犯河水,所以这里也同时排除了坐标点除0的情况。
结论:只有当W=1时,三维坐标点转换成四维齐次坐标点才是等价的,所以一旦发现W不等于1时,就要让W等于1!
<注:此处的概念可以扩展到N维,如二维齐次坐标(x, y, w)中的W的表示,所影响的二维坐标的性质>
那如果W != 1,要如何才能让W=1呢?接下来请看下图。下图中,是一个2D齐次坐标系(即X轴Y轴W轴所构成的三维空间),假设有一平面平行于X和Y轴,且W坐标为1,我们暂且把这个平面叫做W=1平面。在W=1平面上有一点(x,y),二