约瑟夫环问题
第一轮是 [0, 1, 2, 3, 4] ,所以是 [0, 1, 2, 3, 4] 这个数组的多个复制。这一轮 2 删除了。
第二轮开始时,从 3 开始,所以是 [3, 4, 0, 1] 这个数组的多个复制。这一轮 0 删除了。
第三轮开始时,从 1 开始,所以是 [1, 3, 4] 这个数组的多个复制。这一轮 4 删除了。
第四轮开始时,还是从 1 开始,所以是 [1, 3] 这个数组的多个复制。这一轮 1 删除了。
最后剩下的数字是 3。
图中的绿色的线指的是新的一轮的开头是怎么指定的,每次都是固定地向前移位
m
m 个位置。
然后我们从最后剩下的 3 倒着看,我们可以反向推出这个数字在之前每个轮次的位置。
最后剩下的 3 的下标是 0。
第四轮反推,补上
m
m 个位置,然后模上当时的数组大小
2
2,位置是(0 + 3) % 2 = 1。
第三轮反推,补上
m
m 个位置,然后模上当时的数组大小
3
3,位置是(1 + 3) % 3 = 1。
第二轮反推,补上
m
m 个位置,然后模上当时的数组大小
4
4,位置是(1 + 3) % 4 = 0。
第一轮反推,补上
m
m 个位置,然后模上当时的数组大小
5
5,位置是(0 + 3) % 5 = 3。
所以最终剩下的数字的下标就是3。因为数组是从0开始的,所以最终的答案就是3。
总结一下反推的过程,就是 (当前index + m) % 上一轮剩余数字的个数。
代码就很简单了。
作者:sweetieeyi
链接:https://leetcode-cn.com/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof/solution/javajie-jue-yue-se-fu-huan-wen-ti-gao-su-ni-wei-sh/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
class Solution {
public int lastRemaining(int n, int m){
int ans = 0;
//最后一轮剩下2个人,所以从2开始反推
for (int i = 2; i <= n; i++){
ans = (ans + m) % i;
}
return ans;
}
}