什么是人工智能
人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,它致力于创建能够执行通常需要人类智能的任务的系统。这些任务包括但不限于语言理解、学习、推理、问题解决、知识表示、感知、运动控制等。人工智能可以分为几个子领域,包括:
1. **机器学习**:使计算机系统通过经验来改进其性能。
2. **深度学习**:一种特殊的机器学习,使用类似人脑的神经网络结构来处理数据。
3. **自然语言处理**:使计算机能够理解、解释和生成人类语言。
4. **计算机视觉**:使计算机能够“看到”并理解图像和视频中的内容。
5. **机器人学**:设计和构建能够执行各种任务的智能机器人。
6. **专家系统**:模拟人类专家的决策能力,以解决特定领域的问题。
人工智能的目标是创建能够自主工作、学习和适应新情况的智能系统。随着技术的发展,人工智能已经在医疗、金融、交通、教育等多个领域得到应用。
人工智能技术架构

通常来说,人工智能架构分为四层:
基础设施系统层
最底层的基础层一般由软硬件设施以及数据服务组成。
软件设施主要包括智能云平台和大数据平台,比如国外的谷歌大数据平台和国内的百度智能云平台等;
硬件设施主要包括CPU硬件及芯片,美国的高通和苹果都是这个领域的代表企业,目前在我国,在基础层这个层面还比较薄弱,特别在芯片方面一直处于被卡脖子的状态。
也由此可见,未来芯片内研发肯定会是国家重点扶持及发力的行业。
话已经说到这份上了,相关的公司包括:海光信息、景嘉微、龙芯中科、中国长城、安路科技、复旦微电、紫光国微、寒武纪、澜起科技、德科立、天孚通信、中际旭创等。
深度学习框架底层
接着是算法层,是指用系统的方法描述解决问题的策略机制。
李彦宏的《智能革命》一书中说过一句话:
“前三次技术革命时代,是人要去学习和适应机器,但在人工智能时代,是机器主动来学习和适应人类。”
算法模型就是训练机器来学习的,分为机器学习、深度学习以及强化学习。
优秀的算法是机器实现人工智能的最关键一环,对AI发展起到最主要的推动作用。
深度学习框架就属于这一层,是人工智能算法的底层开发工具,是人工智能时代的操作系统,目前国际主流深度学习框架是由互联网巨头主导开发的:

较为流行的深度学习框架有TensorFlow(Google公司开发)、Caffe(由贾扬清和伯克利人工智能实验室研究开发)、PyTorch(由Facebook创建)等。
国产深度学习框架最具代表性的有百度的PaddlePaddle(飞桨)开源深度学习框架等,也都迎来新的发展机遇。
领域应用算法模型层
然后是技术层,主要依托于基础层的计算平台和数据资源进行海量识别训练和机器学习建模,通过不同类型的算法建立深度学习大模型,开发面向不同领域的应用技术。这一层是对人工智能产品的智能化程度起到直接作用,包括自然语言处理(NLP)、语音处理(SpeechProcess)、计算机视觉(CV)等通用技术。
NLP模型:最火的ChatGPT就是基于OpenAI公司开发的InstructGPT模型的对话系统,GPT系列模型源自2017年诞生的Transformer模型,此后大模型数量激增,参数量进入千亿时代。
国内百度也发布了ERNIE系列模型(文心大模型)并有望运用于即将发布的文心一言(ERNIE Bot)对话系统,未来国内厂商有望在模型算法领域持续发力。
SP模型:谷歌语音,百度语音
CV模型:R-FCN、Mask RCNN、YoLo、SSD、FPN、RetinaNet
中间的这两层(框架模型和应用算法模型),技术门槛都还是比较高的,主要以国内外主流的互联网大厂及人工智能科技公司为主,包括百度 、海天瑞声、商汤科技、科大讯飞、微软、谷歌、Meta等。
最新最好的算法业界称为 SOTA(State of the art).
领域应用产品层
最上面的是应用层,主要包括应用平台和智能产品。
应用平台主要是各种智能操作系统,比如苹果IOS、华为鸿蒙等.
智能产品包括像人脸识别、智能客服、自动驾驶、AIGC等运用了人工智能技术的设备或应用产品,ChatGPT就是其中的一种。
ChatGPT火爆全球后,可以窥见伴随人工智能技术的发展,数字内容的生产方式向着更加高效迈进。ChatGPT及AIGC未来可能在游戏、广告营销、影视、媒体、互联网、娱乐等各领域应用,优化内容生产的效率与创意,加速数实融合与产业升级。
这里面涉及到的不管是行业还是公司,其实都很多了,未来甚至也有望会诞生出一批基于深度学习框架及大模型开发出的新的应用产品,至于谁是下一个爆品,就拭目以待了~
另外,除了以上这些,AIGC类产品未来还可能成为互联网时代新的流量入口,率先受益的是底层基础算力及移动互联及物联网行业,通信可能迎来再一次爆发式增长。
人工智能技术已广泛应用于各行各业,深刻改变了生产和生活方式。以下是一些AI应用最为广泛的行业:
-
办公自动化:AI助手如Kimi智能助手、360安全大模型等,提供长上下文窗口技术,支持办公、金融、法律等多个领域的应用 。
-
教育:好未来推出的MathGPT专注于数学领域的大模型,提供解题和讲题算法,已应用于学习机领域 。
-
医疗健康:科大讯飞推出的智能医疗助手,实现诊前、诊中、诊后的数字化和智能化应用 。
-
消费电子与智能家居:如小米的小爱同学和天猫精灵,通过语音识别和自然语言处理技术,控制智能设备并提供多种生活服务 。
-
自动驾驶:毫末智行提供L2-L4级别的自动驾驶解决方案,已商业落地并应用于智能物流和无人配送领域 。
-
智慧城市:AI技术在智慧城市建设中用于交通管理、公共安全、环境监测等多个方面。
-
金融:AI在金融行业中用于风险管理、信贷审批、算法交易等,提高金融服务的智能化水平 。
-
物流:德国物流行业利用AI进行需求预测、生产优化、运输优化等,提高物流效率和降低成本 。
-
内容创作与媒体:AI技术如Midjourney、HuggingFace等用于内容创作、图像和视频生成,推动媒体和娱乐行业的发展 。
-
企业服务:阿里巴巴的夸克App通过AI引擎提供搜索直达、智能问答等功能,满足用户需求 。
AI技术的应用正不断扩展,随着技术的进步,预计将进一步渗透到更多行业中,推动产业升级和创新发展。
本文解析了人工智能的技术架构,从基础设施系统层到应用层,涵盖了硬件设施、深度学习框架、算法模型及智能产品的全貌,并探讨了AI在多个行业的应用。
2370

被折叠的 条评论
为什么被折叠?



