可视化系列(一):Plotly简介及示例

欢迎加入我们卧虎藏龙的python讨论qq群:729683466

还在为拿着数据不知道怎样表达而烦恼吗?

还在为python画图而抓狂吗?

本系列教程教你如何使用plotly进行数据的可视化

plotly简单易上手

绘图炫酷且实用

值得拥有!

本文相关例子皆为Plotly官网中的示例,有兴趣的同学可以自己去官网看看:https://plotly.com/python/

★相关源代码的获取:

1、关注"python趣味爱好者"公众号回复"plotly例子"

2、加入群聊:729683466,在群文件中下载源代码及相关资料。


Jupyter Notebook

《我学习python时一点想法》

python凯撒加密图片

简介

相信大家应该都看过一些关于python做的超级炫酷的动态图,想必大家也非常想自己能做出这么炫酷的动态图出来!因此,公众号特地开设了可视化系列的教程用于......从最基础的一些图表做起(手动滑稽)~

虽然小编知道大家都喜欢那些炫酷的东西;但是呢,再好的东西都需要大家从最基础的学起,不然你永远也就只能仿照别人,不能做出正真属于自己的东西来。

那么本系列文章将对python的可视化的一些比较常用的库做一些稍微详细的介绍,主要包括plotly库、seaborn库和最为经典的matplotlib库。

首先,我们将介绍的是相对来说比较简单的plotly库。

python中的plotly库是一个交互式的并且开源的绘图库,支持很多很多的图表类型,包括但不限于统计、金融、地理、科学和三维方面的图表。

安装
python的三方库想必大家都已经轻车熟路了,但是小编还是要说一遍~

pip安装命令如下:

$ pip install plotly

或者可以使用conda:

$ conda install -c plotly

安装完以后就可以愉快的画图啦,当然,或许有些同学安装会有一些问题,这个时候就推荐大家参考一下模块安装的一些方法

工具

用于学习可视化的python编辑工具小编推荐Jupyter Notebook,不为啥,就觉得它好用,特别是加上一些插件并且做一些小小的设置后,它的美观性以及实用性都是相当的不错的。

示例

好了,所有的准备工作都已经结束了,这个时候我们来看看一些用plotly绘制的一些比较好看的图,这样好给各位同学一些学习的动力。

第一个是上面已经演示过的那个动态直方图,话不多说,我们直接上代码:

import plotly.express as px
from vega_datasets import data
df = data.disasters()
df = df[df.Year > 1990]
fig = px.bar(df,
             y="Entity",
             x="Deaths",
             animation_frame="Year",
             orientation='h',
             range_x=[0, df.Deaths.max()],
             color="Entity")
# improve aesthetics (size, grids etc.)
fig.update_layout(width=1000,
                  height=800,
                  xaxis_showgrid=False,
                  yaxis_showgrid=False,
                  paper_bgcolor='rgba(0,0,0,0)',
                  plot_bgcolor='rgba(0,0,0,0)',
                  title_text='Evolution of Natural Disasters',
                  showlegend=False)
fig.update_xaxes(title_text='Number of Deaths')
fig.update_yaxes(title_text='')
fig.show()

运行完后就会产生如下所示的直方图,上面我们也提到过,plotly库绘制的图都是交互式的,所以我们把鼠标悬停到某个直方上面,就会显示一些悬停信息,这些都是可以自己编辑的,是不是觉得特别炫~~

当然,它作为一个动图,它的下面是带有让它动起来的开关的:

  第二个例子是散点图,如下:

同样,它是带有悬停信息的动态散点图,下面也有控制它动起来的开关(没有截到),是不是也特别好看~

第三个呢名字叫做太阳图,如果你想通过一个或者多个类别变量来分解一个给定的变量,那么太阳图将是一个很好的选择。这么说可能有些同学不是很明白,那么我们就直接上图吧。

这个图就可以很明白的告诉我们男生和女生在吃饭这件事情的上的不同以及各个时间在中餐和晚餐里面所占的比重。当然,作为可交互的图表,当你把鼠标放在上面的时候,就会显示相关的悬停信息。

最后一个小示例呢是一个地形3D表面图;可以看到这个就很直观的展示出了一些地形的样貌,并且可以直接通过鼠标的滑动来改变你的观看视角,用鼠标滚轮还可以将其放大缩小,是不是很方便呢,大家可以自行去尝试。

        

好啦,本期的plotly简介到此就结束啦,同学们有没有对plotly有一点点的了解呢,那么我们下期将正式开始对plotly库的一些图表进行详细讲解,有兴趣或者有需要的同学可以点点关注,防止错过下次的文章哦~

作者|十丿叶

编辑|潇洒哥

感谢大家观看

关注我们不迷路噢

Plotly官网

https://plotly.com/python/

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页