windows10环境下配置PyTorch+anaconda3+Python3.7的深度学习环境

深度学习 专栏收录该内容
3 篇文章 0 订阅


前言

最近要换一个性能稍微好点的电脑,所以需要重新配置深度学习环境,长时间不配置环境,就会重新搜索相关文章学习如何配置,避免以后忘记配置过程,在此记录一下。本文主要搭建的是windows10下PyTorch+anaconda3+Python3.8的环境

一、安装anaconda3

anaconda是一个强大的科学管理包,非常方便,而且还是开源,强烈建议用anaconda做深度学习。

下载

由于是开源,可以直接进官网下载,下载地址:https://www.anaconda.com/products/individual#Downloads
由于是用外网,所以下载比较慢。建议在清华大学镜像网站上下载:
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=A

安装步骤

1.下载好后,有一个可执行文件,直接双击可执行文件文件,按照指引继续安装即可。
需要注意的地方:环境变量前一定要打勾如果默认使用python3.8,则第二个也勾上。

二、安装PyCharm

个人感觉pycharm是最好的Python开发IDE,所以笔者选择Pycharm作为开发工具。

下载

Pycharm的专业版是要收费的,专业版功能齐全。社区版免费,但功能没有专业版多,笔者是学生,感觉社区版足够用了。
下载地址:https://www.jetbrains.com/pycharm/download/#section=windows

安装

直击双击可执行文件,按照提示操作即可,注意环境变量前打勾。

在这里插入图片描述

三、安装PyTorch

1.创建一个虚拟环境,名称为PyTorch1.5.1,使用python=3.7
dos内输入:

conda create -n PyTorch1.5.1 python=3.7

安装过程中会提示yes或者no,都选择 “y” 即可。

2.进入刚才创建的环境

conda activate PyTorch1.5.1

3.用官网上给的命令安装,不过比较慢

官网命令地址:https://pytorch.org/get-started/previous-versions/
注意自己电脑是是否有gpu,如果有就选择带有cudatoolkit的命令安装,否则选择带有cpuonly命令安装

4.镜像安装
添加清华镜像

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

查看镜像:

conda config --show channels

如果要删除自定义源,更改为conda默认源,输入命令:

conda config --remove-key channels

5.然后在命令终端输入安装命令,注意把-c pytorch去掉否则还是从官网下载
示例:conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1

6.检查安装是否成功
输入命令:

import torch
torch.cuda.is_available()

如果显示为True,则安装成功;如果显示为False,则可能cuda版本不一致

三、pycharm 中配置开发环境

1.双击打开pycharm

2.点击New projects
在这里插入图片描述
3.输入项目路径及名称
在这里插入图片描述
4.选择python解释器,注意是刚才创建的anaconda虚拟环境
在这里插入图片描述
选择成功后,点击OK返回,点击create,创建成功。
在这里插入图片描述
5.测试

#测试程序
import torch
flag = torch.cuda.is_available()
print(flag)

gpu= 1
device = torch.device("cuda:0" if (torch.cuda.is_available() and gpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda())

测试结果:

E:\SoftwareDevelopmentTools\anaconda3\envs\PyTorch1.5.1\python.exe F:/PycharmProjects/test/main.py
True
cuda:0
GeForce RTX 2060
tensor([[0.6282, 0.2823, 0.5696],
        [0.3193, 0.8003, 0.2922],
        [0.8278, 0.1842, 0.1270]], device='cuda:0')

Process finished with exit code 0

环境配置成功!

四、安装其它库

1.清华镜像安装opencv

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python

2.镜像安装pycocotools

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pycocotools-windows

3.安装prettytable

pip install PrettyTable

4.安装scipy

pip install scipy

5.安装sklearn 和 skimage

pip install -U scikit-learn
pip install scikit-image

6.安装opencv-contrib
因为sift和suft算法都已经申请了专利,opencv3.4.2之后的版本就不能用了。所以安装opencv-contrib3.4.0.12 python=3.6.2

#创建anconda虚拟环境
conda create -n sift_svm python=3.6
#进入虚拟环境
conda activate sift_svm
#更新pip
python -m pip install --upgrade pip
#安装opencv-contrib3.4.0.12
pip install -i http://pypi.douban.com/simple --trusted-host pypi.douban.com opencv-contrib-python==3.4.0.12
  • 0
    点赞
  • 1
    评论
  • 1
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

评论 1 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页

打赏作者

24一指天下

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值