消息队列
1 消息队列的用途
1.1 解耦
通过消息队列,降低系统间的耦合,避免过多的调用。
- 就好像公司的行政小姐姐要通知一件事情,她通常会是在群里发一个公告,然后我们扣1就行了。要是一个个通知,她要通知几十上百次。
1.2 异步
比如在完成一个订单支付的任务后,我们要扣减库存、增加积分、发送消息等等,这样一来这个链路就长了,链路一长,响应时间就变长了。引入消息队列,除了更新订单状态,其它的都可以异步
去做,这样一来就来,就能更快地响应我们的上游。
为什么不用多线程之类的方式做异步呢?
- 只用多线程做异步,不是还得写代码去调那一堆下游吗,所以这又回到了解耦这个问题上。
1.3 流量削峰
消息队列同样可以用来削峰。
-
用一个比喻,一条河流,假如它的下游能容纳的水量是有限的,为了防止洪水冲垮堤坝,我们应该怎么办呢?
-
我们可以在上游修建一个水库,洪峰来的时候,我们先把水给蓄起来,闸口里只放出下游能承受地住的水量。
-
放在我们的系统,也是一个道理。比如秒杀系统,平时流量很低,但是要做秒杀活动,秒杀的时候流量疯狂怼进来,
你的服务器,Redis,MySQL各自的承受能力都不一样
,直接全部流量照单全收肯定有问题啊,严重点可能直接打挂了。 -
所以一样,我们可以把请求放到队列里面,只放出我们下游服务能处理的流量,这样就能抗住短时间的大流量了。
1.4 延时任务
除了这三大用途之外,还可以利用队列本身的顺序性,来满足消息必须按顺序投递的场景;利用队列 + 定时任务来实现消息的延时
消费
2 消息队列的本质
消息队列核心:发、存、消费
。
生产者先将消息发
一个叫做「队列
」的容器中,存储
在里面。然后再从这个容器中取出消息,最后再转发给消费者进行消费
。
上面这个图便是消息队列最原始的模型,它包含了消息队列中的一两个关键词消息
和队列
:
-
消息:就是要传输的数据,可以是最简单的文本字符串,也可以是自定义的复杂格式。
-
队列:大家应该再熟悉不过了,是一种
先进先出数据结构
。它是存放消息的容器,消息从队尾入队,从队头出队,入队即发消息的过程,出队即收消息的过程。
所以消息队列的本质就是把要传输的数据放在队列中。
围绕着这个本质:
- 把数据放到消息队列的角色就是生产者
- 把数据从队列中取出的就是消费者
3 消息队列模型
在上面已经了解了消息队列模型的本质,随着应用场景的变化,消息队列的模型逐渐发生了一些演进。
就好像我们的文字通讯,最开始单对单地发消息,后来可以群发,再后来,可以拉一个群聊。
3.1 队列模型
最初的消息队列就是上面的原始模型,它是一个严格意义上的队列(Queue)。消息按照什么顺序写进去,就按照什么顺序读出来。不过,队列没有 “读” 这个操作,读就是出队,从队头中 “删除” 这个消息。
如果有多个生产者往同一个队列里面发送消息,这个队列中可以消费到的消息,就是这些生产者生产的所有消息的合集。消息的顺序就是这些生产者发送消息的自然顺序。
如果有多个消费者接收同一个队列的消息,这些消费者之间实际上是竞争的关系,每个消费者只能收到队列中的一部分消息,也就是说任何一条消息只能被其中的一个消费者收到
3.2 发布 - 订阅模型
如果需要将一份消息数据分发给多个消费者,并且每个消费者都要求收到全量的消息。很显然,队列模型无法满足这个需求。
- 一个可行的方案是:为每个消费者创建一个单独的队列,让生产者发送多份。这种做法比较笨,而且同一份数据会被复制多份,也很浪费空间。
为了解决这个问题,就演化出了另外一种消息模型:发布-订阅模型。
在发布 - 订阅模型中,消息的发送方
称为发布者(Publisher)
,消息的接收方
称为订阅者(Subscriber),服务端存放消息的容器称为
主题(Topic)`。发布者将消息发送到主题中,订阅者在接收消息之前需要先“订阅主题”。“订阅”在这里既是一个动作,同时还可以认为是主题在消费时的一个逻辑副本,每份订阅中,订阅者都可以接收到主题的所有消息。
仔细对比下它和 “队列模式” 的异同:生产者就是发布者,队列就是主题,消费者就是订阅者,无本质区别。唯一的不同点在于:一份消息数据是否可以被多次消费。
4 消息队列代价
天下没有白吃的午餐——这句话放在系统设计中同样适用。引入了消息队列,解决了一些问题,但同时也增加了系统的复杂性和维护成本。
4.1 高可用
我们引入了消息队列,虽然降低了系统间的耦合,但是,我们对消息队列的依赖也变重了,想想,要是消息队列挂了,那我们下游就全凉了。
所以,我们消息队列的部署必须保证高可用,至少是主/从
,一般都得集群/分布式
。
4.2 消息丢失问题(后续记得补充:标记)
我们将数据写到消息队列上,下游服务没来得及取消息队列的数据,突然挂了。如果没有做任何的措施,我们的数据就丢了。
那可怎么办呢?
消息队列中的数据得想办法存在别的地方,这样才尽可能减少数据的丢失。
问题又来了,存在哪呢?
- 磁盘?
- 数据库?
- Redis?
- 分布式文件系统?
同步存储还是异步存储?
4.3 重复消费问题(后续记得补充:标记)
要是我们网络延迟或者什么原因,导致下游重复消费怎么办?
我们这个问题是在消息队列解决?还是在下游服务解决?
还有其它的顺序消息等等问题。
这些问题都是选型时候需要充分考虑的。
5 消息队列选择
目前在市面上比较主流的主要有四大消息中间件:Kafka、ActiveMQ、RabbitMQ、RocketMQ
。
参考:https://mp.weixin.qq.com/s/KhTKi94TiY4Q2yzXQ9LXCw