万能装饰器

万能装饰器与装饰器传参详解
本文深入解析了Python中万能装饰器的工作原理,包括如何使用装饰器而不改变原始函数的行为,以及如何为装饰器传递参数。通过具体实例展示了装饰器在权限认证等场景中的应用。

###万能装饰器

# 装饰前的test(最先定义的test)是由func指向
# 装饰后的test其实就是call_fun
# 装饰器在道德上不会去更改原先函数的返回值,不会去更改原先的参数
# call_fun,func,test这三个参数一般保持一致
def set_fun(func):
	def call_fun(*args,**kwargs):
		print("--->args",args)
		print("--->kwargs",kwargs)
		return func(*args,**kwargs) # 拆包

	return call_fun

@set_fun  # fun1 = set_fun(fun1)
def fun1(*args, **kwargs):
	print(args)
	print(kwargs)
	return 100

print(fun1())
print(fun1(123,456))
print(fun1(123, 456, a=1, b=2))

###装饰器传参

# 三个函数的嵌套,最外层(第三层必须返回闭包的引用),最外层必须的参数

def set_value(value):
    print(value)
    def set_fun(func):
        def call_fun():
            print("权限认证")
            func()  # 这个就是原先的函数

        return call_fun

    return set_fun

# 这个分成两步
# 第一步:set_value("吃饭"),得到闭包的的引用
# 第二步:@闭包的引用 @set_fun ===> test=set_fun(test)
@set_value("吃 饭")
def fun1():
    print("test")
内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值