
TPAMI 2024 | 广义线性因果网络的联邦学习
题目:Federated Learning of Generalized Linear Causal Networks广义线性因果网络的联邦学习作者:Qiaoling Ye; Arash A. Amini; Qing Zhou摘要因果发现,即从数据中推断变量之间的因果关系,是科学中的一个基本问题。如今,由于对数据隐私问题的日益关注,分布式数据收集、处理和存储发生了转变。为了满足分布式因果发现的迫切需求,我们提出了一种新的联合有向无环图(DAG)学习方法,称为分布式退火正则化似然分数(DARLS),




















