| 经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍《OpenCV 4开发详解》。为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通,提前在公众号上连载部分内容,请持续关注小白。 |
Sobel算子是通过离散微分方法求取图像边缘的边缘检测算子,其求取边缘的思想原理与我们前文介绍的思想一致,除此之外Sobel算子还结合了高斯平滑滤波的思想,将边缘检测滤波器尺寸由ksize * 1改进为ksize * ksize,提高了对平缓区域边缘的响应,相比前文的算法边缘检测效果更加明显。使用Sobel边缘检测算子提取图像边缘的过程大致可以分为以下三个步骤:
-
Step1:提取X方向的边缘, X 方向一阶Sobel边缘检测算子如(5.16)所示。
[ − 1 0 1 − 2 0 2 − 1 0 1 ] (5.16) {\begin{bmatrix} { {\rm{ - 1}}}&{\rm{0}}&{\rm{1}}\\ { {\rm{ - 2}}}&{\rm{0}}&{\rm{2}}\\ { {\rm{ - 1}}}&{\rm{0}}&{\rm{1}} \end{bmatrix}} \tag{5.16} ⎣⎡−1−2−1000121⎦⎤(5.16) -
Step2:提取Y方向的边缘, Y 方向一阶Sobel边缘检测算子如(5.17)所示。
[ − 1 − 2
本文介绍了Sobel算子在OpenCV 4中的应用,用于图像边缘检测。Sobel算子结合了高斯平滑滤波,通过3x3的滤波器提高对平缓边缘的响应。提取边缘分为三个步骤:X方向、Y方向的一阶Sobel算子,然后结合两个方向的边缘信息。OpenCV 4的Sobel()函数用于实现这一过程,关键参数包括差分阶数、滤波器尺寸等。示例程序展示了如何使用Sobel()函数提取图像的X、Y方向边缘和整体边缘。
最低0.47元/天 解锁文章
598

被折叠的 条评论
为什么被折叠?



