| 经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍《OpenCV 4开发详解》。为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通,提前在公众号上连载部分内容,请持续关注小白。 |
Mean-Shift算法又被称为均值漂移法,是一种基于颜色空间分布的图像分割算法。该算法的输出是一个经过滤色的“分色”图像,其颜色会变得渐变,并且细纹纹理会变得平缓。
在Mean-Shift算法中每个像素点用一个五维的向量 ( x , y , b , g , r ) (x,y,b,g,r) (x,y,b,g,r)表示,前两个量是像素点在图像中的坐标 ( x , y ) (x,y) (x,y),后三个量是每个像素点的颜色分量(蓝、绿、红)。在颜色分布的峰值处开始,通过滑动窗口不断寻找属于同一类的像素点并统一像素点的像素值。滑动窗口由半径和颜色幅度构成,半径决定了滑动窗口的范围,即坐标 ( x , y ) (x,y) (x,y)的范围,颜色幅度决定了半径内像素点分类的标准。这样通过不断地移动滑动窗口,实现基于像素点颜色的图像分割。由于分割后同一类像素点具有相同像素值,因此Mean-Shift算法的输出结果是一个颜色渐变、纹理平缓的图像。
OpenCV 4中提供了实现Mean-Shift算法分割图像的pyrMeanShiftFiltering()函数,该函数的函数原型在代码清单8-23中给出。
代码清单8-23 pyrMeanShiftFiltering()函数原型
1. void cv::pyrMeanShiftFiltering(InputArray src,
2.
本文介绍了Mean-Shift算法,一种基于颜色空间分布的图像分割方法。在OpenCV 4中,使用pyrMeanShiftFiltering()函数实现该算法,通过不断移动滑动窗口找到同一类像素点,输出颜色渐变、纹理平缓的图像。文章讨论了函数参数及其对图像分割的影响,并通过示例程序展示了多次分割处理对图像边缘的改变。
最低0.47元/天 解锁文章
1417

被折叠的 条评论
为什么被折叠?



