点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达

本期,我们将一起学习如何从图像中提取出含有条形码的区域。下面的代码,我们将在Anaconda中采用Python 2.7 完成,当然OpenCV中的图像处理库也是必不可少的。
分割是识别图像内一个或多个对象的位置的过程。我们要介绍的技术其实非常简单,它利用了形态算子的扩张和侵蚀,以及诸如开运算,闭运算和黑帽算子的组合。
01.简介
安装Anaconda后,让我们从Anaconda的提示符下使用以下命令转到OpenCV安装:
conda install -c https://conda.anaconda.org/menpo opencv
现在,让我们从Anaconda启动器启动Spyder IDE。

Anaconda启动器
一旦运行了Spyder,建议验证OpenCV安装是否成功。在Python控制台的右下角,我们进行以下测试:
import cv2
代码讲解
我们已经创建了一个启动GitHub存储库。小伙伴可以使用以下方法直接克隆它:
git clone --branch step1
https://github.com/lucapiccinelli/BarcodesTutorial.git
现在,我们将要下载测试图像,并对他们进行读取和显示。

本文介绍了如何利用Python的OpenCV库从图像中提取条形码区域。通过二值化、形态学操作(如膨胀、闭运算、黑帽算子)以及连接组件检测,实现对条形码的定位。尽管该方法对条形码倾斜和尺寸有限制,但可以通过调整参数和结合神经网络进一步优化。
最低0.47元/天 解锁文章
621

被折叠的 条评论
为什么被折叠?



