点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
小白导读论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

摘要
作者设计了一个简单而强大的深层网络架构,U2-Net,用于显著目标检测(SOD)。作者的U2-Net的体系结构是一个两层嵌套的U型结构。设计具有以下优点:(1)它能够捕捉更多上下文信息从不同尺度的混合接受字段大小不同的在计划的剩余U-blocks (RSU),(2)它增加了整个架构的深度没有显著增加池的计算成本,因为这些RSU块中使用的操作。这种架构使作者能够从头开始训练一个深度网络,而不需要从图像分类任务中使用骨干。为了方便在不同的环境下使用,作者对所提出的架构U2- Net (176.3 MB, 30 FPS在GTX 1080Ti GPU上)和U2- Net+ (4.7 MB, 40 FPS)两个模型进行了实例化。这两种模型在6个SOD数据集上都具有竞争性能。
代码链接:https://github.com/NathanUA/U-2-Net
论文创新点
作者的主要贡献是一种新颖而简单的网络架构,称为U2-Net,它解决了上述两个问题。首先,U2-Net是一种为SOD设计的两层嵌套
本文介绍了一种名为U2-Net的深度网络架构,用于显著目标检测。该架构采用两层嵌套的U型结构,能从不同尺度捕捉上下文信息,同时保持较低的计算成本。U2-Net无需预训练的骨干网络,可以直接从头训练,并在多个SOD数据集上表现出竞争力。作者还提供了代码实现和实验结果,证明了其模型的有效性和效率。
最低0.47元/天 解锁文章
1612

被折叠的 条评论
为什么被折叠?



