点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达

今天,我们将研究如何在OpenCV框架中使用YOLO。YOLO于2016年问世,用于多目标检测,它与OpenCV框架兼容,但我们需要下载“ yolov3.weights”和“yolov3.cfg”。
现在让我们来看一下代码,它相当简单。第一步将是导入模型并读取包含图像标签的“coco.names”并获取输出层。

下一步是读取输入图像,并创建Blob从输入图像中提取特征。图像的输入尺寸为416 * 416,(0,0,0)表示图像的色彩空间。

我们将遍历该blob并找出已检测到的对象。但是在此之前,我们必须将blob馈给yol

本文介绍了如何在OpenCV中使用YOLO进行目标检测。首先需要下载YOLO的权重和配置文件,然后导入模型,读取标签,设置输入尺寸。接着,通过创建Blob提取图像特征,用算法处理并筛选出置信度高的对象。最后,利用边界框显示检测结果。此教程有助于理解在OpenCV中应用YOLO的步骤。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



