点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
小白导读
论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

摘要
这项工作解决了从单一的RGB图像手部网格恢复。与大多数现有的方法相比,先前使用的参数化手模型,我们表明,可以直接从输入图像学习手网格。我们提出了一种新型的神经网络,即Im2Mesh神经网络,通过端对端对抗训练来学习网格。通过将网格解释为一个图,我们的模型能够捕获网格顶点之间的拓扑关系。我们还在GAN体系结构中引入了一个3D表面描述符,以进一步捕获相关的3D特征。我们试验了两种方法,其中一种可以获得图像的地面真相数据可用性和相应的网格相结合的好处,而另一种则解决了在没有相应地面真相的情况下进行网格估计的更具有挑战性的问题。通过广泛的评估,我们证明所提出的方法优于最先进的。
论文创新点
重要的是,通过将网格解释为图,我们可以利用图神经网络(GNNs)的最新进展来支持生成器和鉴别器网络中的网格处理。gnn已经展
Im2Mesh GAN是一种新型神经网络,能从单个RGB图像中直接学习手部3D网格。通过对抗训练和图神经网络,模型能捕捉网格的拓扑关系和3D特征,从而提高恢复精度。方法在有无地面真相数据情况下都表现出优越性能。
最低0.47元/天 解锁文章
7054

被折叠的 条评论
为什么被折叠?



