Im2Mesh GAN:从一张RGB图像中恢复3D手部网格

Im2Mesh GAN是一种新型神经网络,能从单个RGB图像中直接学习手部3D网格。通过对抗训练和图神经网络,模型能捕捉网格的拓扑关系和3D特征,从而提高恢复精度。方法在有无地面真相数据情况下都表现出优越性能。
摘要由CSDN通过智能技术生成

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

小白导读

论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

摘要

这项工作解决了从单一的RGB图像手部网格恢复。与大多数现有的方法相比,先前使用的参数化手模型,我们表明,可以直接从输入图像学习手网格。我们提出了一种新型的神经网络,即Im2Mesh神经网络,通过端对端对抗训练来学习网格。通过将网格解释为一个图,我们的模型能够捕获网格顶点之间的拓扑关系。我们还在GAN体系结构中引入了一个3D表面描述符,以进一步捕获相关的3D特征。我们试验了两种方法,其中一种可以获得图像的地面真相数据可用性和相应的网格相结合的好处,而另一种则解决了在没有相应地面真相的情况下进行网格估计的更具有挑战性的问题。通过广泛的评估,我们证明所提出的方法优于最先进的。

论文创新点

重要的是,通过将网格解释为图,我们可以利用图神经网络(GNNs)的最新进展来支持生成器和鉴别器网络中的网格处理。gnn已经展

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值