点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
小白导读
论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

源码链接:https://github.com/omertov/encoder4editing
摘要
最近,通过使用预先训练过的无条件生成器来执行图像编辑的各种方法出现了激增。然而,在真实图像上应用这些方法仍然是一个挑战,因为它必然需要将图像反转到它们的潜在空间。为了成功地反转真实图像,需要找到一种潜在的代码来准确地重建输入图像,更重要的是,允许对其进行有意义的操作。本文详细研究了最先进的无条件生成器StyleGAN的潜在空间。作者识别并分析在样式潜在空间中存在的扭曲-可编辑性权衡和扭曲-感知权衡。然后,作者提出了两个设计编码器的原则,使其能够控制与StyleGAN最初训练的区域的倒置的接近性。作者提出了一个基于作者的两个原则的编码器,这是专为促进编辑真实图像,通过平衡这些权衡。通过对其在包括汽车和马在内的众多具有挑战性的领域的性能进行定性和定量评价,作者证明了作者的反演方法,以及常见的编辑技术,在只有很小的重建精度下降的情况下,获得了较
本文探讨了StyleGAN潜在空间的复杂性,分析了失真、可编辑性和感知质量之间的权衡。作者提出了一种新的编码器e4e,旨在促进真实图像的编辑,同时保持低失真和高编辑质量。实验结果展示了在多个领域中的有效应用。
最低0.47元/天 解锁文章
5269

被折叠的 条评论
为什么被折叠?



