一个用于styleGAN图像处理的编码器

本文探讨了StyleGAN潜在空间的复杂性,分析了失真、可编辑性和感知质量之间的权衡。作者提出了一种新的编码器e4e,旨在促进真实图像的编辑,同时保持低失真和高编辑质量。实验结果展示了在多个领域中的有效应用。
摘要由CSDN通过智能技术生成
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达

小白导读

论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

源码链接:https://github.com/omertov/encoder4editing

摘要

最近,通过使用预先训练过的无条件生成器来执行图像编辑的各种方法出现了激增。然而,在真实图像上应用这些方法仍然是一个挑战,因为它必然需要将图像反转到它们的潜在空间。为了成功地反转真实图像,需要找到一种潜在的代码来准确地重建输入图像,更重要的是,允许对其进行有意义的操作。本文详细研究了最先进的无条件生成器StyleGAN的潜在空间。作者识别并分析在样式潜在空间中存在的扭曲-可编辑性权衡和扭曲-感知权衡。然后,作者提出了两个设计编码器的原则,使其能够控制与StyleGAN最初训练的区域的倒置的接近性。作者提出了一个基于作者的两个原则的编码器,这是专为促进编辑真实图像,通过平衡这些权衡。通过对其在包括汽车和马在内的众多具有挑战性的领域的性能进行定性和定量评价,作者证明了作者的反演方法,以及常见的编辑技术,在只有很小的重建精度下降的情况下,获得了较

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值