点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达

数据扩充是一种增加数据集多样性的技术,无需收集更多真实数据,但仍有助于提高模型精度并防止模型过度拟合。在这篇文章中,我们将学习使用 Python 和 OpenCV 为对象检测任务实现最流行和最有效的数据扩充过程。
即将引入的一组数据扩充方法包括:
随机裁剪
断流器
颜色抖动
添加噪音
过滤
首先,让我们导入几个库并准备一些必要的子程序。
import os
import cv2
import numpy as np
import random
def file_lines_to_list(path):
'''
### Convert Lines in TXT File to List ###
path: path to file
'''
with open(path) as f:
content = f.readlines()
content = [(x.strip()).split() for x in content]
return content
def get_file_name(path):
'''
### Get Filename of Filepath ###
path: path to file
'''
basename = os.path.basename(path)
onlyname = os.path.splitext(basename)[0]
return onlyname
def write_anno_to_txt(boxes, filepath):
'''
### Write Annotation to TXT File ###
boxes: format [[obj x1 y1 x2 y2],...]
filepath: path/to/file.txt
'''
txt_file = open(filepath, "w")
for box in boxes:
print(box[0], int(box[1]), int(box[2]), int(box[3]), int(box[4]), file=txt_file)
txt_file.close()
下面的图片在这篇文章中用作示例图片。

随机裁剪
随机裁剪随机选择一个区域并裁剪出来做一个新的数据样本,裁剪后的区域应该与原始图像具有相同的宽高比以保持物体的形状。

从上图中,左图表示带有真实边界框(红色)的原始图像,右图是通过裁剪橙色框内的区域创建的新样本。在新样本的注释中,去除左图中与橙色框不重叠的所有对象,并细化位于橙色框边界上的对象的坐标以适合新图像样本,原始图像随机裁剪的输出为新裁剪图像及其注释。

数据增广是通过技术手段增加数据集多样性,防止模型过拟合。本文介绍了使用Python和OpenCV实现的对象检测任务数据增广,包括随机裁剪、断流器、颜色抖动、添加噪音和过滤等方法。断流器常用于图像识别,但对对象检测需做调整,以避免丢失小对象。颜色抖动和添加噪音是简单而有效的增强手段,而过滤如模糊、高斯和中值滤波也可用于增强图像。
最低0.47元/天 解锁文章
1937

被折叠的 条评论
为什么被折叠?



