题目:Scalable SoftGroup for 3D Instance Segmentation on Point
用于点云三维实例分割的可扩展软组
作者:Thang Vu; Kookhoi Kim; Thanh Nguyen; Tung M. Luu; Junyeong Kim; Chang D. Yoo
源码链接: https://github.com/thangvubk/SoftGroup
摘要
本文提出了一种称为SoftGroup的新型网络,旨在实现点云上准确且可扩展的3D实例分割。现有的最先进方法通常首先生成硬语义预测,然后进行实例分割的分组阶段。然而,这些硬决策中的错误往往会传播,导致预测实例与真实标注之间的匹配度差,以及产生大量误报。为了解决这些问题,SoftGroup允许每个点与多个类别关联,从而减轻了语义预测中固有的不确定性。它还通过学习将它们归类为背景来减少误报实例。在可扩展性方面,当前的快速方法需要在大规模场景上进行数十秒的计算时间,这是不满意的,并且不适合实时应用。我们的调查揭示了k-最近邻(k-NN)模块,对分组至关重要,却造成了计算
订阅专栏 解锁全文

70

被折叠的 条评论
为什么被折叠?



