TPAMI 2024 | 通过节点到邻域对齐的自监督节点表示学习

303 篇文章 21 订阅 ¥59.90 ¥99.00

Self-Supervised Node Representation Learning via Node-to-Neighbourhood Alignment

题目:通过节点到邻域对齐的自监督节点表示学习

作者: W. Dong; D. Yan; P. Wang
源码:https://github.com/dongwei156/n2n


摘要

自监督节点表示学习的目标是从无标签图中学习节点表示,使其能够与有监督的同类相媲美。学习信息丰富节点表示的关键在于如何有效地从图结构中获取上下文信息。在本项工作中,我们提出了一种简单而有效的自监督节点表示学习方法,通过将节点与其邻域的隐藏表示对齐来实现。我们的第一个想法是通过直接最大化它们表示之间的互信息来实现这种节点到邻域的对齐,我们从理论上证明了这一点,在图平滑方面发挥了作用。我们的框架通过替代的对比损失进行优化,并且提出了一种拓扑感知正采样(TAPS)策略,通过考虑节点之间的结构依赖性来采样正样本,从而实现离线正选择。考虑到对比学习中过多的内存开销,我们进一步提出了一种无负样本的解决方案,其中主要贡献是图信号去

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值