TPAMI 2024 | 正则化损失与超参数估计在弱监督单类分割中的应用

303 篇文章 21 订阅 ¥59.90 ¥99.00

Regularized Loss With Hyperparameter Estimation for Weakly Supervised Single Class Segmentation

正则化损失与超参数估计在弱监督单类分割中的应用

作者:Zongliang Ji; Olga Veksler


摘要

我们提出了一种新的图像级弱监督分割方法,适用于只含有单一感兴趣对象类别的数据集。我们的方法基于经典条件随机场(CRF)建模启发的正则化损失函数。我们的损失模型了通用对象的属性,并用它引导CNN朝向更可能对应于对象的区域,从而避免了对像素精确标注的需求。对于使用正则化损失训练CNN来说,梯度下降面临困难任务。我们开发了一种退火算法,这对于成功的训练至关重要。此外,我们为正则化损失中最重要的组成部分开发了一种超参数设置方法。由于缺乏像素级的真值指导,这远非易事。我们方法的优势在于我们使用标准的CNN架构和易于解释的损失函数,该损失函数源自经典的CRF模型。此外,我们将相同的损失函数应用于任何任务/数据集。我们首先在显著对象分割和共分割任务中评估我们的方法。这些任务自然涉及单一对象类别。然后,我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值