Regularized Loss With Hyperparameter Estimation for Weakly Supervised Single Class Segmentation
正则化损失与超参数估计在弱监督单类分割中的应用
作者:Zongliang Ji; Olga Veksler
摘要
我们提出了一种新的图像级弱监督分割方法,适用于只含有单一感兴趣对象类别的数据集。我们的方法基于经典条件随机场(CRF)建模启发的正则化损失函数。我们的损失模型了通用对象的属性,并用它引导CNN朝向更可能对应于对象的区域,从而避免了对像素精确标注的需求。对于使用正则化损失训练CNN来说,梯度下降面临困难任务。我们开发了一种退火算法,这对于成功的训练至关重要。此外,我们为正则化损失中最重要的组成部分开发了一种超参数设置方法。由于缺乏像素级的真值指导,这远非易事。我们方法的优势在于我们使用标准的CNN架构和易于解释的损失函数,该损失函数源自经典的CRF模型。此外,我们将相同的损失函数应用于任何任务/数据集。我们首先在显著对象分割和共分割任务中评估我们的方法。这些任务自然涉及单一对象类别。然后,我们
订阅专栏 解锁全文

1153

被折叠的 条评论
为什么被折叠?



