SMEMO: Social Memory for Trajectory Forecasting
题目:SMEMO:用于轨迹预测的社会记忆
作者:Francesco Marchetti, Federico Becattini , Lorenzo Seidenari , and Alberto Del Bimbo
摘要
在预测未来轨迹等行为时,有效建模人类互动至关重要。每个人的运动都会影响周围人,因为每个人都遵循诸如避免碰撞或群体跟随等非书面的社会规则。在本文中,我们通过算法视角,即将问题视为数据操作任务,来模拟这些随时间不断演变的互动。我们提出了一种基于端到端可训练工作记忆的神经网络,它作为外部存储,可以连续地写入、更新和回忆有关每个代理的信息。我们展示了我们的方法能够学习不同代理运动之间的可解释的因果关系,并且在多个轨迹预测数据集上获得了最先进的结果。
关键词
- 自动驾驶
- 记忆增强网络
- 社会互动
- 轨迹预测
I. 引言
自动驾驶汽车很快将成为普及技术。为了符合安全标准,这些车辆必须能够预测周
订阅专栏 解锁全文

716

被折叠的 条评论
为什么被折叠?



