TPAMI 2024 | SMEMO:用于轨迹预测的社会记忆

303 篇文章 21 订阅 ¥59.90 ¥99.00

SMEMO: Social Memory for Trajectory Forecasting

题目:SMEMO:用于轨迹预测的社会记忆

作者:Francesco Marchetti, Federico Becattini , Lorenzo Seidenari , and Alberto Del Bimbo


摘要

在预测未来轨迹等行为时,有效建模人类互动至关重要。每个人的运动都会影响周围人,因为每个人都遵循诸如避免碰撞或群体跟随等非书面的社会规则。在本文中,我们通过算法视角,即将问题视为数据操作任务,来模拟这些随时间不断演变的互动。我们提出了一种基于端到端可训练工作记忆的神经网络,它作为外部存储,可以连续地写入、更新和回忆有关每个代理的信息。我们展示了我们的方法能够学习不同代理运动之间的可解释的因果关系,并且在多个轨迹预测数据集上获得了最先进的结果。

关键词

  • 自动驾驶
  • 记忆增强网络
  • 社会互动
  • 轨迹预测

I. 引言

自动驾驶汽车很快将成为普及技术。为了符合安全标准,这些车辆必须能够预测周

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值