Distributionally Robust Memory Evolution With Generalized Divergence for Continual Learning
用于持续学习的基于广义差异的分布稳健记忆演化
Zhenyi Wang o, Li Shen , Tiehang Duan , Qiuling Suo o, Le Fang , Wei Liu ,Mingchen Gao
摘要
持续学习(Continual Learning, CL)的目标是在非静态数据分布上学习,同时不忘记先前的知识。现有依赖于记忆重放的方法,随着模型趋于过度拟合存储的示例,其有效性会随时间降低。结果,模型泛化能力受到显著限制。此外,这些方法经常忽视记忆数据分布的固有不确定性,这与之前所有数据示例的分布有显著差异。为了克服这些问题,我们提出了一个原则性的记忆演化框架,通过分布式鲁棒优化(Distributionally Robust Optimization, DRO)动态调整记忆数据分布,使记忆缓冲区越来越难以记忆。我们考虑了DRO中的两种约束:f-散度和Wasserste
订阅专栏 解锁全文
467

被折叠的 条评论
为什么被折叠?



