TPAMI 2024 | TokenCut: 利用自监督Transformer和归一化割算法在图像和视频中分割对象

303 篇文章 21 订阅 ¥59.90 ¥99.00

题目:TokenCut: Segmenting Objects in Images and Videos With Self-Supervised Transformer and Normalized Cut

TokenCut: 利用自监督Transformer和归一化割算法在图像和视频中分割对象

作者:Yangtao Wang; Xi Shen; Yuan Yuan; Yuming Du; Maomao Li; Shell Xu Hu; James L. Crowley; Dominique Vaufrey


摘要

在本文中,我们描述了一种基于图的算法,该算法使用自监督Transformer获得的特征来检测和分割图像和视频中的显著对象。通过这种方法,构成图像或视频的图像块被组织成一个全连接图,在该图中,每对块之间的边被标记基于Transformer学习到的特征的相似度得分。然后,显著对象的检测和分割可以被表述为图割问题,并使用经典的Normalized Cut算法来解决。尽管这种方法简单,但它在几个常见的图像和视频检测与分割任务上取得了最先进的结果。对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值