Evolving Domain Generalization via Latent Structure-Aware Sequential Autoencoder
演变中的领域泛化通过潜在结构感知序列自编码器
Tiexin Qin, Shiqi Wang, Haoliang Li
摘要
领域泛化(DG)指的是将机器学习系统推广到分布外(OOD)数据的问题,该问题通过从几个提供的源领域学习知识来解决。大多数先前的工作将自己局限在静止和离散的环境中来解决由OOD数据引起的这种泛化问题。然而,在实践中,许多非静止环境中的任务(例如,自动驾驶汽车系统,传感器测量)涉及更复杂且持续演变的领域漂移,为模型部署带来了新的挑战。在本文中,我们首先将这种设置格式化为演变领域泛化问题。为了应对不断变化的领域,我们提出了一种新的框架MMD-LSAE,它通过学习捕获领域间的演变模式以实现更好的泛化。具体来说,MMD-LSAE通过两种类型的分布偏移来表征非静止环境中的OOD数据:协变量偏移和概念偏移,并使用深度自编码器模块分别在潜在空间推断它们的动态。在这些模块中,通
订阅专栏 解锁全文
342

被折叠的 条评论
为什么被折叠?



