TPAMI 2024|演变中的领域泛化通过潜在结构感知序列自编码器

303 篇文章 21 订阅 ¥59.90 ¥99.00

Evolving Domain Generalization via Latent Structure-Aware Sequential Autoencoder

演变中的领域泛化通过潜在结构感知序列自编码器

Tiexin Qin, Shiqi Wang, Haoliang Li


摘要

领域泛化(DG)指的是将机器学习系统推广到分布外(OOD)数据的问题,该问题通过从几个提供的源领域学习知识来解决。大多数先前的工作将自己局限在静止和离散的环境中来解决由OOD数据引起的这种泛化问题。然而,在实践中,许多非静止环境中的任务(例如,自动驾驶汽车系统,传感器测量)涉及更复杂且持续演变的领域漂移,为模型部署带来了新的挑战。在本文中,我们首先将这种设置格式化为演变领域泛化问题。为了应对不断变化的领域,我们提出了一种新的框架MMD-LSAE,它通过学习捕获领域间的演变模式以实现更好的泛化。具体来说,MMD-LSAE通过两种类型的分布偏移来表征非静止环境中的OOD数据:协变量偏移和概念偏移,并使用深度自编码器模块分别在潜在空间推断它们的动态。在这些模块中,通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值