TPAMI 2024 | 面向开放词汇表的语义分割的边侧适配器网络

303 篇文章 21 订阅 ¥59.90 ¥99.00

题目:SAN: Side Adapter Network for Open-Vocabulary Semantic Segmentation

面向开放词汇表的语义分割的边侧适配器网络

作者:Mengde Xu; Zheng Zhang; Fangyun Wei; Han Hu; Xiang Bai

源码链接: https://github.com/MendelXu/SAN


摘要

本文专注于开放词汇语义分割(Open-Vocabulary Semantic Segmentation, OVSS),目标是构建一个能够识别图像中任意类别的模型。为实现此目标,我们提出了一种新颖的框架,称为边适配网络(Side Adapter Network, SAN)。我们的设计原则有三个方面:1)最近的大规模视觉-语言模型(例如CLIP)展现出了有前景的开放词汇图像分类能力;通过适配预训练的CLIP模型至开放词汇语义分割是训练效率的优化。2)我们的SAN模型应该既轻量又有效,以降低推理成本——为实现这一点,我们融合了CLIP模型的中间特征来增强SAN模型

SSIM损失是结构相似性损失的缩写,它在语义分割中被广泛使用。SSIM损失是一种用于衡量生成的图像与原始图像之间结构相似性的指标。它通过比较图像的亮度、对比度和结构来评估它们之间的相似性。SSIM损失可以确保生成的重新照明图像在保持原始图像结构的同时进行重照明。\[3\] 在SSIM损失中,使用了一个简化的SSIM指标和一个3×3的块滤波器。该损失函数的定义如下: Lssim = 1 - SSIM(R, I) 其中,R是重新照明图像,I是输入图像。SSIM函数用于计算两个图像之间的结构相似性指数。通过最小化SSIM损失,可以确保生成的图像能够保持原始图像的结构。\[3\] 总结起来,SSIM损失是一种用于衡量生成图像与原始图像之间结构相似性的损失函数,在语义分割中被广泛应用。它可以帮助生成的图像保持原始图像的结构特征。 #### 引用[.reference_title] - *1* [语义分割loss汇总](https://blog.csdn.net/frighting_ing/article/details/123363738)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [python工具方法 33 基于lossFusion类实现多个loss的集成](https://blog.csdn.net/a486259/article/details/125956395)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [TPAMI2021语义分割/领域自适应-Domain Adaptation Network with Image Alignment for Unsupervised ...](https://blog.csdn.net/ssshyeong/article/details/124221158)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值