题目:Predicting Label Distribution From Tie-Allowed Multi-Label Ranking
从允许平局的多标签排序预测标签分布
作者:Yunan Lu; Weiwei Li; Huaxiong Li; Xiuyi Jia
摘要
标签分布提供了比逻辑标签更多的关于标签多义性的信息。目前有两种获取标签分布的方法:标签分布学习(LDL)和标签增强(LE)。在LDL中,专家必须用标签分布来注释训练实例,并且在此训练集上训练预测函数以获得标签分布。在LE中,专家必须用逻辑标签注释实例,然后从这些逻辑标签中恢复标签分布。然而,LDL受到昂贵注释的限制,而LE没有性能保证。因此,我们研究了如何从允许平局的多标签排序(TMLR)预测标签分布,这是一种在注释成本和良好性能保证之间的折中。一方面,我们从理论上分析了TMLR和标签分布之间的关系。我们定义了预期近似误差(EAE)来量化注释的质量,为TMLR提供了EAE界限,并导出了给定TMLR注释对应的标签分布的最佳范围。另一方面,我们提出
订阅专栏 解锁全文
1090

被折叠的 条评论
为什么被折叠?



