TPAMI 2024 | 用于图像匹配的动态关键点检测网络

303 篇文章 21 订阅 ¥59.90 ¥99.00

题目:Dynamic Keypoint Detection Network for Image Matching

用于图像匹配的动态关键点检测网络

作者:Yuan Gao; Jianfeng He; Tianzhu Zhang; Zhe Zhang; Yongdong Zhang


摘要

在现实世界的挑战,如光照、视角和尺度变化的情况下,建立一对图像之间的有效对应关系是困难的。现代基于检测器的方法通常从给定数据集中学习固定的检测器,这很难提取在极端外观变化和纹理稀疏场景下对各种图像重复且可靠的关键点。为了解决这个问题,我们提出了一种新颖的动态关键点检测网络(DKDNet),通过动态关键点特征学习模块和引导的热图激活器,实现鲁棒的图像匹配。所提出的DKDNet具有几个优点。首先,所提出的动态关键点特征学习模块可以通过注意力机制生成自适应的关键点特征,该机制可以随着当前输入图像灵活更新,并且能够捕获具有不同模式的关键点。其次,引导的热图激活器可以通过充分考虑不同特征通道的重要性来有效地融合多组关键点热图,从而实现更鲁棒的关键点检测。在四个标准基准上的广泛实验结果表明,我们的DKDNet在性能上大幅度超越了最先进的图像匹配方法。具体来说&#

IEEE TPAMIIEEE Transactions on Pattern Analysis and Machine Intelligence)是一个涵盖模式识别、计算机视觉、图像处理和机器学习等领域的高质量期刊,其中也包括用于缺陷检测的研究。 以下是一些在IEEE TPAMI期刊上发表的用于缺陷检测的论文: 1. "Automatic Defect Detection in X-Ray Images Using Convolutional Neural Networks"(使用卷积神经网络自动检测X射线图像中的缺陷)-- 该论文提出了一种基于卷积神经网络(CNN)的自动缺陷检测方法,该方法可以应用于各种类型的X射线图像中的缺陷检测。 2. "Unsupervised Defect Detection in Textured Materials Using Convolutional Autoencoders"(使用卷积自动编码器在纹理材料中进行无监督缺陷检测)-- 该论文提出了一种基于卷积自动编码器(CAE)的无监督缺陷检测方法,该方法可以有效地检测纹理材料中的缺陷。 3. "A Hierarchical Approach to Defect Detection in Semiconductor Wafer Images"(半导体晶圆图像缺陷检测的分层方法)-- 该论文提出了一种基于分层方法的缺陷检测方法,可以应用于半导体晶圆图像中的缺陷检测。 4. "Deep Learning-Based Defect Detection in Semiconductor Manufacturing"(基于深度学习的半导体制造中的缺陷检测)-- 该论文提出了一种基于深度学习的缺陷检测方法,可以应用于半导体制造中的缺陷检测,并且在实验中取得了良好的结果。 这些论文都展示了IEEE TPAMI作为一个重要的期刊,提供了广泛的研究和应用领域,包括缺陷检测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值