题目:MO-MIX: Multi-Objective Multi-Agent Cooperative Decision-Making With Deep Reinforcement Learning
MO-MIX:基于深度强化学习的多目标多智能体协同决策
作者:Tianmeng Hu; Biao Luo; Chunhua Yang; Tingwen Huang
摘要
深度强化学习(RL)已被广泛应用于解决复杂的决策问题。在许多现实世界的场景中,任务通常有多个相互冲突的目标,并且可能需要多个智能体进行合作,这些是多目标多智能体决策问题。然而,在这个交叉领域的研究工作还相对较少。现有的方法仅限于单独的领域,并且只能处理具有单一目标的多智能体决策,或者具有单一智能体的多目标决策。在本文中,我们提出了MO-MIX来解决多目标多智能体强化学习(MOMARL)问题。我们的方法基于集中训练与分散执行(CTDE)框架。一个代表目标偏好的权重向量被输入到分散的智能体网络中,作为局部动作价值函数估计的条件,同时使用具有并行架构的混合网络来估