
图像处理顶刊解读
文章平均质量分 94
小白学视觉
跟着小白一起学视觉
展开
-
IJCV 2024 | 基于密度和深度分解的鲁棒无配对图像去雾
更多TPAMI,IJCV,TMI等顶刊文章欢迎关注我们的微信公众号,每天带你阅读最新顶刊论文为了解决在合成的有雾-清晰图像对上训练的去雾模型的过拟合问题,近期的方法尝试通过在未配对数据上训练来增强泛化能力。然而,大多数现有方法仅仅依赖于生成对抗网络来构建去雾-加雾循环,却忽略了现实世界有雾环境中的物理属性,即雾效应会随着密度和深度的变化而变化。本文提出了一种鲁棒的自增强图像去雾框架,用于雾的生成和移除。与仅仅估计传输图或清晰内容不同,所提出的方案专注于探索有雾和清晰图像的散射系数和深度信息。原创 2024-07-05 09:46:37 · 1290 阅读 · 0 评论 -
IJCV 2024 | CoCoNet:用于多模态图像融合的耦合对比学习网络与多级特征集成
CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature Ensemble for Multi-modality Image Fusion CoCoNet:用于多模态图像融合的耦合对比学习网络与多级特征集成 Jinyuan Liu; Runjia Lin;Guanyao Wu;Risheng Liu;Zhongxuan;Luo Xin Fan 更多TPAMI,IJCV,TMI等顶刊文章欢迎关注我们的微信公众号,每天带你阅读原创 2024-07-04 09:40:36 · 2626 阅读 · 0 评论