Linux---lvm逻辑卷管理

LVM管理详解
本文详细介绍LVM(逻辑卷管理)的基本概念与操作流程,包括物理卷、卷组、逻辑卷等核心组件的理解,以及如何创建、扩展、缩小LVM卷,并介绍了快照和删除的相关操作。

                                                                                         ##lvm逻辑卷管理##


pv                                              ##物理卷
                                                  被lv命令处理过的物理分区
vg                                              ##物理卷组
                                                  被组装到一起的物理卷
pe                                              ##物理扩展
                                                   lvm设备的最小存储单元lvm时pe的证书倍

lvm                                              ##逻辑卷
                                                   直接使用的设备,可以增大所见并保持原有数据不变

##lvm建立##  (可以用watch -n 1 'pvs;vgs;lvs;df -h /mnt'更好地监控)
1.分区并设定分区标签位(8e)

pvcreate /dev/vdb1
vgcreate vg0 /dev/vdb1
lvcreate  -L 20M -n lv0  vg0
mkfs.xfs /dev/vg0/lv0
mount /dev/vg0/lv0 /mnt
df -H /mnt

watch命令监控效果图:

##lvm的拉伸##

lvm支持热拉伸


1.当vg中的剩余容量充足情况(上述中剩余容量位76m)

拉伸70:

   lvextend -L 70M /dev/vg0/lv0

   xfs_growfs /dev/vg0/lv0 ##拉伸设备

由图可以看出lvm已经被拉伸位69M,而刚开始只有17M


2.当vg中的容量不足
再次建立分区并修改标签8e
pvcreate /dev/vdb2     生成物理卷 /dev/vdb2
vgextend vg0 /dev/vdb2   物理卷/dev/vdb2加到物理卷组/dev/vg0


lvextend -L  120M dev/vg0/lv0                   拉伸120m
xfs_growfs  /dev/vg0/lv0    格式化 /dev/vg0/lv0

由图可看出:已经拉伸到了120M

3.针对ext文件系统的设备的拉伸和缩减
umount /mnt
mkfs.ext4 /dev/vg0/lv0

mount /dev/vg0/lv0 /mnt

#拉伸
lvextend -L   152M /dev/vg0/lv0
resize2fs /dev/vg0/lv0

##缩减
#缩减lvm
umount /dev/vg0/lv0
e2fsck -f /dev/vg0/lv0
resize2fs /dev/vg0/lv0 100M
lvreduce -L 100M /dev/vg0/lv0
mount /dev/vg0/lv0 /mnt

#缩减vg
移除空闲pv

vgreduce vg0 /dev/vdb2
移除含有数据的设备
pvmove /dev/vdb1 /dev/vdb2
vgreduce vg0 /dev/vdb1
pvremove /dev/vdb1

##lvm块照##

lvcreate -L 40 M -n lv0-backup -s /dev/vg0/lv0

这个就是lvm的快照,同虚拟机快照的原理一样。

弄坏了还可以继续快照出来继续操作。


挂载mount /dev/vg0/lv0 到    /mnt  上,

会在/mnt 中查看到 lost+found文件 ,如图所示:


rm -rf /mnt/*

umount /mnt


##lvm的删除##
vgremove vg0
pvremove /dev/vdb2
lvremove /dev/vg0/lv0-backup    ##移除/dev/vg0/lv0-backup 
lvremove /dev/vg0/lv0                  ##移除/dev/vg0/lv0   

效果如图:

 

 

MATLAB代码实现了一个基于多种智能优化算法优化RBF神经网络的回归预测模型,其核心是通过智能优化算法自动寻找最优的RBF扩展参数(spread),以提升预测精度。 1.主要功能 多算法优化RBF网络:使用多种智能优化算法优化RBF神经网络的核心参数spread。 回归预测:对输入特征进行回归预测,适用于连续值输出问题。 性能对比:对比不同优化算法在训练集和测试集上的预测性能,绘制适应度曲线、预测对比图、误差指标柱状图等。 2.算法步骤 数据准备:导入数据,随机打乱,划分训练集和测试集(默认7:3)。 数据归一化:使用mapminmax将输入和输出归一化到[0,1]区间。 标准RBF建模:使用固定spread=100建立基准RBF模型。 智能优化循环: 调用优化算法(从指定文件夹中读取算法文件)优化spread参数。 使用优化后的spread重新训练RBF网络。 评估预测结果,保存性能指标。 结果可视化: 绘制适应度曲线、训练集/测试集预测对比图。 绘制误差指标(MAE、RMSE、MAPE、MBE)柱状图。 十种智能优化算法分别是: GWO:灰狼算法 HBA:蜜獾算法 IAO:改进天鹰优化算法,改进①:Tent混沌映射种群初始化,改进②:自适应权重 MFO:飞蛾扑火算法 MPA:海洋捕食者算法 NGO:北方苍鹰算法 OOA:鱼鹰优化算法 RTH:红尾鹰算法 WOA:鲸鱼算法 ZOA:斑马算法
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值