Numpy中shape为(m,)的是行向量还是列向量

参考资料
总结一句话:Numpy中的数组shape为(m,)说明它是一个一维数组,或者说是一个向量,但是具体是行向量还是列向量是很灵活的,再与矩阵进行矩阵乘法时,numpy会自动判断此时的一维数组应该取行向量还是列向量。

所以说,无须纠结得到的一维数组是行向量还是列向量,或者说一维数组在用户看来就没有行列之分,其行列的不同在Python计算时会自动进行处理。

这一点通过numpy对数组的转置也可以看出来,对一维数组进行转置操作,numpy内部不会对其进行任何的操作。

# Note that taking the transpose of a rank 1 array does nothing:
v = np.array([1,2,3])
print v    # Prints "[1 2 3]"
print v.T  # Prints "[1 2 3]"
  • 4
    点赞
  • 8
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cc1924

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值