AI大道理
码龄6年
关注
提问 私信
  • 博客:205,142
    社区:1,209
    学院:262
    206,613
    总访问量
  • 101
    原创
  • 19,017
    排名
  • 429
    粉丝
  • 9
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2018-07-19
博客简介:

aibigtruth的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,044
    当月
    15
个人成就
  • 获得351次点赞
  • 内容获得39次评论
  • 获得1,976次收藏
创作历程
  • 15篇
    2024年
  • 27篇
    2023年
  • 8篇
    2022年
  • 31篇
    2021年
  • 25篇
    2020年
成就勋章
TA的专栏
  • 视觉课程(course)
    5篇
  • 目标检测(YOLO)
    28篇
  • 视觉面试(Interview)
    1篇
  • AI项目(Project)
    1篇
  • 软考高项(Manage)
    6篇
  • 视觉大模型(LLM)
    1篇
  • 视觉基础(CV Basic)
    2篇
  • 目标跟踪(Object Tracking)
    8篇
  • 论文阅读(Thesis reading)
    2篇
  • 孪生网络(Siamese Network)
    2篇
  • 深度网络(DeepNetwork)
    4篇
  • 模型剪枝(Model Pruning)
    2篇
  • 深度学习(DeepLearning)
    4篇
  • 数据算法(LeetCode)
    6篇
  • AI数学(Mathematics of AI)
  • 边缘计算(Jetson Nano )
  • 图像处理(OpenCV)
    1篇
  • 编程语言(Python)
  • 机器学习(MachineLearning)
  • 模型部署(tensorRT)
    2篇
  • 语音识别(ASR)
    14篇
  • 语音框架(Kaldi)
    16篇
  • 编程语言(C++)
    1篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉深度学习神经网络tensorflowpytorch图像处理
TA的社区
  • 常心老师的课程社区_NO_1
    1 成员 57 内容
    创建者
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

YOLO11: 从0开始搭建环境进行模型训练

YOLO11:从0开始搭建环境进行模型训练》课程致力于帮助学生实战YOLO11目标检测算法。常心老师将手把手带领大家从0开始搭建YOLO11环境,带领大家排坑、避坑、填坑。本课程将进行数据集打标、格式转化、模型训练、训练结果分析、模型推理等一系列演示。另外常心老师还会带领大家进行训练优化,训练一个更好的模型,最后将在ubuntu系统下进行演示。常心老师致力于打造AI视觉专业,打破本科专业与岗位不对口的壁垒,岗位需要什么教什么,岗位面试什么,学什么,实际应用什么就做什么项目。浅谈则止,细致入微AI大道理。
原创
发布博客 2024.11.03 ·
303 阅读 ·
9 点赞 ·
0 评论 ·
2 收藏

YOLOv5: 原理与源码

常心老师将手把手从0开始解读YOLOv5-v6.0工程目录结构,解读YOLOv5-v6.0的Backbone,Neck,Head网络结构原理与源码,解读训练全流程的原理与源码,解读推理全流程的原理与源码。本课程涉及到的知识包括CBS、C3、SPPF、PANet、Head、自适应锚框、数据增强、正负样本匹配机制、Loss计算、优化器、评价指标、NMS等原理与源码。常心老师致力于打造AI视觉专业,打破本科专业与岗位不对口的壁垒,岗位需要什么教什么,岗位面试什么,学什么,实际应用什么就做什么项目。
原创
发布博客 2024.10.19 ·
173 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

YOLOv5:Android手机NCNN部署

常心老师将手把手带领大家从0开始搭建YOLOv5+Android+NCNN环境,带领大家排坑、避坑、填坑。本课程将进行环境搭建、模型转换、软件配置、模型调用、手机调试等一系列演示。另外常心老师还会总结编译问题,运行问题,手机连接问题,app闪退问题等一些列问题并提供解决方案。常心老师致力于打造AI视觉专业,打破本科专业与岗位不对口的壁垒,岗位需要什么教什么,岗位面试什么,学什么,实际应用什么就做什么项目。无常世界有常心,常心老师祝大家学习工作顺利!扫描下方“AI大道理”,选择“关注”公众号。
原创
发布博客 2024.09.24 ·
287 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

YOLOv5:TensorRT模型加速与部署(wts版)

YOLOv5:TensorRT模型加速与部署(wts版)》课程致力于帮助学生实战YOLOv5目标检测算法的TensorRT加速部署。常心老师将手把手带领大家从0开始搭建YOLOv5-TensorRT环境,带领大家排坑、避坑、填坑。本课程将进行环境搭建、模型转换、模型加速等一系列演示。常心老师致力于打造AI视觉专业,打破本科专业与岗位不对口的壁垒,岗位需要什么教什么,岗位面试什么,学什么,实际应用什么就做什么项目。扫描下方“AI大道理”,选择“关注”公众号。无常世界有常心,常心老师祝大家考试顺利!
原创
发布博客 2024.09.15 ·
177 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

YOLOv5: 从0开始搭建环境进行模型训练

YOLOv5:从0开始搭建环境进行模型训练》课程致力于帮助学生实战YOLOv5目标检测算法。常心老师将手把手带领大家从0开始搭建YOLOv5环境,带领大家排坑、避坑、填坑。本课程将进行数据集打标、格式转化、模型训练、训练结果分析、模型推理等一系列演示。另外常心老师还会带领大家进行训练优化,训练一个更好的模型,最后将在ubuntu系统下进行演示。常心老师致力于打造AI视觉专业,打破本科专业与岗位不对口的壁垒,岗位需要什么教什么,岗位面试什么,学什么,实际应用什么就做什么项目。浅谈则止,细致入微AI大道理。
原创
发布博客 2024.09.07 ·
237 阅读 ·
8 点赞 ·
0 评论 ·
3 收藏

YOLOv9:一个关注信息丢失问题的目标检测

YOLOv9的PGI技术包括辅助可逆分支和多级辅助信息,这些设计有助于在网络的深层中保留更多的信息,生成更可靠的梯度,从而在训练过程中确保了更准确的目标与输入之间的关联。YOLOv9的PGI技术包括辅助可逆分支和多级辅助信息,这些设计有助于在网络的深层中保留更多的信息,生成更可靠的梯度,从而在训练过程中确保了更准确的目标与输入之间的关联。在深度网络的训练过程中,由于层与层之间的复杂映射,有用的信息可能会逐渐丢失,这会导致梯度信号变弱,最终影响网络的学习效率和预测准确性。
原创
发布博客 2024.07.08 ·
803 阅读 ·
8 点赞 ·
0 评论 ·
17 收藏

从入门到入职:AI视觉算法面试宝典100题第一季

从入门到入职:AI视觉算法面试宝典100题第一季》致力于帮助同学们顺利通过面试,顺利入职AI视觉算法工程师一职。常心老师将从图像算法、深度学习、机器学习三个方面入手,根据多年面试经验,精心设计了基础、高频、中频面试题共100道,帮助大家进行面试模拟,以更好的应对职场面试。常心老师致力于打造AI视觉专业,打破本科专业与岗位不对口的壁垒,岗位需要什么教什么,岗位面试什么,学什么,实际应用什么就做什么项目。面试链接:https://weike.fm/4KuPU1fcd8。浅谈则止,细致入微AI大道理。
原创
发布博客 2024.06.26 ·
206 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

YOLOv10:无需NMS的目标检测新范式(强的离谱)

本本来自公众号“AI大道理”。
原创
发布博客 2024.06.25 ·
863 阅读 ·
16 点赞 ·
0 评论 ·
18 收藏

人脸识别:基于卷积神经网络(CNN)分类思想的人脸识别系统

之前很多人来询问这个项目怎么做,代码跑不起来,里面的原理不是很懂,现在参与这个视频课程就能无痛做这个项目啦。手把手教你环境搭建、模型训练、模型预测,实战演示,搭建一套分类思想的人脸识别系统,带你入职。本科、研究生想要学习神经网络、深度学习基础知识的同学,边做项目边学习,学习效果更佳。了解人脸识别、卷积神经网络、分类算法,初步学习人脸识别算法,带你入门。借着代码了解每一步的原理,一行代码一个原理,细致入微,将知识刻入灵魂。庖丁解牛,对系统的代码进行讲解,让你对项目的代码了如指掌,刻入骨髓。
原创
发布博客 2024.05.24 ·
523 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

【宫殿记忆】挑战软考高项最难最多ITTO

扫描下方“AI大道理”,选择“关注”公众号。本文来自公众号“AI大道理”浅谈则止,细致入微AI大道理。
原创
发布博客 2024.05.21 ·
333 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

【宫殿记忆】软考高项ITTO宫殿记忆法介绍

有些老师建议背诵,有些老师建议不用背,记住几个就行,常心老师建议是背下来。一切都是机缘,方法不难,难就难在不知道这个方法。扫描下方“AI大道理”,选择“关注”公众号。十大管理一共667条知识点要背。无常世界有常心,常心老师祝大家考试顺利!1)死记硬背(朗读30遍、手抄30遍)4)最重要的是ITTO是论文的大纲。1)80%*80%=64%的知识。本文来自公众号“AI大道理”3)案例分析可能会考默写题。2)零散,联系弱,逻辑性差。浅谈则止,细致入微AI大道理。
原创
发布博客 2024.05.21 ·
203 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【宫殿记忆】软考高项ITTO宫殿记忆课程介绍

扫描下方“AI大道理”,选择“关注”公众号。添加图片注释,不超过 140 字(可选)添加图片注释,不超过 140 字(可选)添加图片注释,不超过 140 字(可选)添加图片注释,不超过 140 字(可选)本文来自公众号“AI大道理”浅谈则止,细致入微AI大道理。
原创
发布博客 2024.05.21 ·
145 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【课程发布】软考高项目十大管理ITTO宫殿记忆法新版第四版正式发布

各位软考高级信息系统项目管理师考生好,新版第四版十大管理ITTO宫殿记忆法视频课程终于发布了,之前苦等的考生终于迎来了救星,再也不用担心记不住ITTO了。宫殿记忆法最快只要1天24小时就能全部记完,一天一个晚上记忆一个过程,也只要7-10天就可全部记忆完毕。宫殿记忆法,49张图片记住49个过程ITTO,记忆过程不枯燥,记忆效果非常好,甚至可以倒背如流。添加图片注释,不超过 140 字(可选)添加图片注释,不超过 140 字(可选)添加图片注释,不超过 140 字(可选)浅谈则止,细致入微AI大道理。
原创
发布博客 2024.05.21 ·
254 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

【课程发布】软考高项目十大管理ITTO宫殿记忆法新版第四版正式发布

各位软考高级信息系统项目管理师考生好,新版第四版十大管理ITTO宫殿记忆法视频课程终于发布了,之前苦等的考生终于迎来了救星,再也不用担心记不住ITTO了。宫殿记忆法最快只要1天24小时就能全部记完,一天一个晚上记忆一个过程,也只要7-10天就可全部记忆完毕。宫殿记忆法,49张图片记住49个过程ITTO,记忆过程不枯燥,记忆效果非常好,甚至可以倒背如流。相信第三版跟着常心老师记忆的考生深有体会。扫描下方“AI大道理”,选择“关注”公众号。抓住机缘,就可能成为15%这部分的人。浅谈则止,细致入微AI大道理。
原创
发布博客 2024.04.25 ·
355 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

YOLO v8:目标检测的最新王者

本文来自公众号“AI大道理”——————Yolov8是Yolo系列模型的最新王者,各种指标全面超越现有目标检测模型。Yolov8借鉴了Yolov5、Yolov6、YoloX等模型的设计优点,全面改进了Yolov5模型结构,同时保持了Yolov5工程化简洁易用的优势。1、YOLOV8的改进1)Backbone2)Neck3)Head4)Loss计算5)标签匹配策略2、BackboneYOLOv8的backbone使用C2f模块代替C3模块。
原创
发布博客 2024.03.14 ·
1833 阅读 ·
21 点赞 ·
0 评论 ·
30 收藏

CLIP:万物分类(视觉语言大模型)

本文来着公众号“AI大道理”​论文地址:https://arxiv.org/abs/2103.00020传统的分类模型需要先验的定义固定的类别,然后经过CNN提取特征,经过softmax进行分类。然而这种模式有个致命的缺点,那就是想加入新的一类就得重新定义这个类别的标签,并重新训练模型,这样非常不方便。CLIP打破了这个桎梏。CLIP能做到在一定标签内进行训练,标签外的也能进行分类。那么CLIP到底是如何认识未知的事物的呢?1、从人脸识别开始说起最早的打破固定标签的方法和应用就是人脸识别了。
原创
发布博客 2023.11.13 ·
1962 阅读 ·
2 点赞 ·
0 评论 ·
15 收藏

坐标转换:从图像坐标到世界坐标的旅程

图像坐标系的单位是mm,属于物理单位。由于三维转二维的时候标定板就是直接设标定板到相机的距离为0,即z轴为0,因此,在二维图像坐标转化到三维世界坐标中我们也可以设置其中一个维度为已知的一个量,即Zc是可以求到的。确定空间某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些坐标系之间的转换参数就是相机参数,求解参数的过程叫做相机标定。具体来讲是这样的,成像元件和镜头和中心是在同一水平线上的,原点(0,0)都是它们各自的正中心,成像元件的每一个感光单元实际上就是图像的一个像素。
原创
发布博客 2023.11.11 ·
2185 阅读 ·
6 点赞 ·
0 评论 ·
34 收藏

相机标定:张正友标定原理

本文来自公众号“AI大道理”——————计算机视觉的源头是相机,因此我们有必要对相机有所了解。原始相机拍摄的图像一般都会有所畸变,导致画面和实际观测的有所排查,为了让相机拍摄的图像和肉眼观察的一致,就需要进行相机标定,获得相机参数,从而进行校正。1、相机模型相机是如何成像的?光束从物体表面反射,经过相机镜头,到达感光原件,这一系列物理过程可以通过数学公式表达,最终变成一个简单的矩阵操作将三维空间中的点对应到图片的一个像素。2、为什么要相机标定?
原创
发布博客 2023.11.10 ·
813 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

DeepSort:基于检测的目标跟踪的经典

DeepSORT的主要思想是将目标检测和目标跟踪两个任务相结合。首先使用目标检测算法(Faster R-CNN等)在每一帧中检测出目标物体的位置和边界框。然后,通过深度学习模型(如CNN)提取目标的特征表示,将每个目标与先前帧中已跟踪的目标进行匹配。匹配过程中会考虑目标的特征相似度、运动一致性等因素,以确定目标的身份和轨迹。DeepSORT的关键贡献之一是使用了一个强大的外观特征描述符,可以准确地区分不同目标之间的相似度。
原创
发布博客 2023.08.19 ·
1161 阅读 ·
0 点赞 ·
0 评论 ·
17 收藏

论文解读:DeepSort(目标跟踪)

简单在线实时跟踪(SORT)是一种实用的多目标跟踪方法,专注于简单有效的算法。在本文中,我们集成了外观信息来提高SORT的性能。由于这种扩展,我们能够在更长的遮挡时间内跟踪对象,有效地减少了身份切换的数量。本着原始框架的精神,我们将大部分计算复杂性置于离线预训练阶段,在那里我们在大规模的人员重新识别数据集上学习深度关联度量。在线申请过程中,我们使用视觉外观空间中的最近邻居查询。实验评估表明,我们的扩展将身份切换的数量减少了45%,在高帧率下实现了整体竞争性能。
原创
发布博客 2023.07.29 ·
961 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏
加载更多