数据分析之pandas(一)

数据分析之pandas(一)

简介

pandas 是基于Numpy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。

数据结构

Series:一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近。Series如今能保存不同种数据类型,字符串、boolean值、数字等都能保存在Series中。

Time- Series:以时间为索引的Series。

DataFrame:二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器。

Panel :三维的数组,可以理解为DataFrame的容器。

Panel4D:是像Panel一样的4维数据容器。

PanelND:拥有factory集合,可以创建像Panel4D一样N维命名容器的模块。

一、series

序列(Series)是由一组数据(各种NumPy数据类型),以及一组与之相关的数据标签(索引)组成,序列不要求数据类型是相同的

序列是一个一维数组,只有一个维度(或称作轴)是行(row),在访问序列时,只需要设置一个索引。pandas自动为序列创建了一个从0开始到N-1的序号,称作行的下标,行的位置。可以显式设置index参数,为每行设置标签,pandas把标签称作索引。用户可以通过索引、也可以通过位置来访问Series对象中的元素。

序列可以看作是索引到数据值的一个映射,一个索引对应一个数据值,这种结构就是有序的字典。

简而言之,序列就是一组带有标签的一维数组,标签可以看成索引。

1、创建序列的三种方法

序列的构造函数定义是:

pandas.Series(data=None, index=None, dtype=None, name=None, copy=False)

构造函数的参数:

  • data:传递给序列的数据,可以是ndarray、list或字典
  • index:设置轴的索引,索引值的个数与data参数的长度相同。如果没有设置index参数,那么默认值是 np.arange(n),或者 RangeIndex (0, 1, 2, …, n)。
  • dtype:设置序列元素的数据类型,如果没有设置,那么将推断数据类型
  • name:序列是一个多行的结构,name是序列的名称
  • copy:复制数据,默认值是false

索引的下标是自动生成的,从0开始,加1递增。对于序列的data,可以通过序列的属性values来访问;对于序列的索引,可以通过序列的属性index来访问。

1.1、使用一维数组创建序列

import numpy as np
import pandas as pd
import string


s1  = pd.Series(np.arange(7))
print(s1)

0    0
1    1
2    2
3    3
4    4
5    5
6    6
dtype: int32

显式传递index参数

注意:在构造函数中传递自定义的索引列表,索引的长度必须和data的长度相同,如下所示:

sd1 = pd.Series(data = np.arange(5),index = list(string.ascii_uppercase[:5]))
print(sd1)

A    0
B    1
C    2
D    3
E    4
dtype: int32

显式设置序列的name和index的name

注意:序列是一维数组,只有一个维度,那就是row,在序列中为Index命名就是设置行轴的名称。

sd2 = pd.Series(data=['a','b'],index=pd.Index(['01','02'],name='index_name'),name='series_name')
print(sd2)

index_name
01    a
02    b
Name: series_name, dtype: object

1.2、使用列表创建序列

s2 = pd.Series([1, 2, 3, 4])
print(s2)
0    1
1    2
2    3
3    4
dtype: int64

1.3、使用字典创建序列

使用一个字典生成Series,其中字典的键,就是索引

s3 = pd.Series({'1':'A', '2':'B', '3':'C'})
print(s3)
1    A
2    B
3    C
dtype: object

2、序列的属性

序列对象包含的属性:

  • index:序列的索引
  • shape:序列的形状,表示各个维度的数量
  • values:把序列的数据值转换为numpy数组
  • dtype:序列元素的数据类型
  • hasnan:序列是否包含nan
  • is_unique:序列的元素是否是唯一的

2.1、序列的索引(index)

s_index = pd.Series({'1':'A', '2':'B', '3':'C'})
print("s_index索引:", s_index.index)
print("s_index.index数据类型:",type(s_index.index))

s_index索引: Index(['1', '2', '3'], dtype='object')
s_index.index数据类型: <class 'pandas.core.indexes.base.Index'>

2.2、 序列的形状(shape)

sp = pd.Series({'1':'A', '2':'B', '3':'C'})
print("sp的shape:", sp.shape)

sp的shape: (3,)

2.3、 序列的值(values)

sv = pd.Series({'1':'A', '2':'B', '3':'C'})
print(sv.values)
print(type(sv.values))

['A' 'B' 'C']
<class 'numpy.ndarray'>

3、序列数据的转换

3.1、转换序列的数值类型

Series.astype(dtype, copy=True, errors='raise', **kwargs)

语法参数

dtype:转换的数据类型

copy:copy=True返回副本,default True

errors:errors=‘ignore’忽略异常,默认’raise’,异常报错

s = pd.Series(range(3))
print(s)
s = s.astype('float')
print(s)

0    0
1    1
2    2
dtype: int64
0    0.0
1    1.0
2    2.0
dtype: float64

3.2、把序列转换为list

Series.tolist()
s = pd.Series(range(3))
s = s.tolist()
print(s)#[0, 1, 2]

3、访问序列的元素

序列元素的访问,可以通过索引和行标签,索引标签是在构造函数中通过index参数传递或构造的,而索引值(也可以称作序列的下标)是默认生成的,第一个元素的下标值是0,依次加1递增。

3.1、通过索引访问series的元素

s = pd.Series(data = range(5),index = list(string.ascii_uppercase[:5]))
print(s)
print("索引为C的元素:",s['C'])
A    0
B    1
C    2
D    3
E    4
dtype: int64
索引为C的元素:2

3.2、series切片

s = pd.Series(data = range(10), index = list(string.ascii_uppercase[:10]))
s = s[2:10:3]#[start:end:step]
print(s)
#C    2
#F    5
#I    8
#dtype: int64

s = pd.Series(data = range(10), index = list(string.ascii_uppercase[:10]))
s = s[["A","C","E"]]#传入索引列表获取多个元素
print(s)
#A    0
#C    2
#E    4
#dtype: int64

s = pd.Series(data = range(10), index = list(string.ascii_uppercase[:10]))
s = s[["A","C","E","Z"]]
print(s)
#A    0.0
#C    2.0
#E    4.0
#Z    NaN
#dtype: float64

3.3、通过位置掩码(布尔索引数组)来访问序列的元素

索引数据的元素类型是布尔类型,并且索引数组的元素数量和序列相同,那么把这种索引数组称作bool索引,也称位置掩码。当位置为True时,表示选择该元素;当位置为False,表示不选择该元素。

#布尔索引来访问序列的元素
s = pd.Series(data = range(10), index = list(string.ascii_uppercase[:10]))
s1 = s[[True,False,False,False,True,True,True,True,False,True]]#bool索引
s2 = s[s>3]#bool索引
print(s1)
print("*"*50)
print(s2)
#A    0
#E    4
#F    5
#G    6
#H    7
#J    9
#dtype: int64
**************************************************
#E    4
#F    5
#G    6
#H    7
#I    8
#J    9
#dtype: int64

3.4、获得懒惰迭代器来访问元素

可以通过序列的_ iter _()函数获得值的迭代器,也可以通过items()或iteritems()函数获得包含索引和值的元组的迭代器:

Series. __iter__(self)    #Return an iterator of the values.
Series.items(self)           #Lazily iterate over (index, value) tuples.
Series.iteritems(self)       #Lazily iterate over (index, value) tuples.
s = pd.Series(data = range(10), index = list(string.ascii_uppercase[:10]))
for i in s.items():
    print(i)
#结果如下:
('A', 0)
('B', 1)
('C', 2)
('D', 3)
('E', 4)
('F', 5)
('G', 6)
('H', 7)
('I', 8)
('J', 9)

4、序列的基本常用方法

4.1、删除元素的元素

根据行标签删除特定的元素

Series.drop(self, labels=None)

4.2、对序列元素执行条件查询

如果序列元素的值满足cond条件,返回other的值;如果不满足,返回元素的值。

Series.where(self, cond, other=nan, inplace=False)

4.3、把序列追加到一个序列末尾

把to_append序列追加到序列的末尾,设置ignore_index表示忽略原始序列的索引,重新创建一个索引:

Series.append(self, to_append, ignore_index=False, verify_integrity=False)
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值