知识图谱发展报告阅读笔记(一)知识表示与建模

1.什么是知识表示

知识->人类对知识进行的描述、表示和传承->人工智能与知识的关系->知识表示

知识是人类通过观察、学习和思考有关客观世界的各种现象而获得和总结出的所有事实(Facts)、概念(Concepts)、规则或原则(Rules & Principles)的集合。

人类发明了各种手段来描述、表示和传承知识,如自然语言、绘画、音乐等。

人工智能的核心也是研究怎样用计算机易于处理的方式表示、学习和处理各种各样的知识。

知识表示是现实世界的可计算模型 (Computable Model of Reality)

知识表示历史:
认知科学家 Allan M. Collins 提出了 Semantic Network(语义网络)的知识表示方法,以网络的方式来描述概念之间的语义关系。
早期专家系统最常用的知识表示方法包括基于框架的语言(Frame-based Languages)和产生式规则(Production Rules)等。

由于语义网络,框架语言和产生式规则都缺失严格的语义理论模型和形式化的语义定义。

人们开始研究具有较好的理论模型基础和算法复杂度的知识表示框架。比较有代表性的是描述逻辑语言(Description Logic)。

1998 年,Web 之父 Tim Berners Lee 提出了 Semantic Web 的概念。其早期理想是希望把传统基于超文本链接的 Web 逐步转化为基于实体链接的语义网。

上述的知识表示方法都是以符号逻辑为基础的知识表示方法,易于刻画显性、离散的知识。但由于人类知识还包含大量不易于符号化的隐性知识,完全基于符号逻辑的知识表示通常由于知识的不完备而失去鲁棒性,特别是推理很难达到实用。由此催生了采用连续向量方式来表示知识的研究。

基于向量的方式表示知识:用类似于词向量的低维稠密向量的方式表示知识的研究。通过嵌入(Embedding)将知识图谱中的实体和关系投射到一个低维的连续向量空间,可以为每一个实体和关系学习出一个低维度的向量表示。

2. 知识图谱的表示方法

基于符号的知识图谱表示方法

以语义网的知识表示框架为例简要介绍基于符号的知识图谱表示方法

RDF
RDF是最常用的符号语义表示模型。RDF的基本模型是有向标记图(Directed Labeled Graph)。图中的每一条边对应于一个三元组(Subject-主语,Predicate-谓语,Object-宾语)。

RDFS
RDF 提供了描述客观世界事实的基本框架,但缺少类、属性等 Schema 层的
定义手段。**RDFS(RDF Schema)主要用于定义术语集、类集合和属性集合,**主要包括如下元语: Class, subClassOf, type, Property,subPropertyOf, Domain, Range等。基于这些简单的表达构件可以构建最基本的类层次体系和属性体系。

OWL
OWL 主要在 RDFS 基础之上扩展了表示类和属性约束的表示能力,这使得可以构建更为复杂而完备的本体

基于向量的知识图谱表示学习模型

依据知识图谱嵌入表示模型建模原理将基于向量的知识表示模型划分为翻
译模型、组合模型、神经网络模型。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读