leetcode542

# 解题思路

一开始的想法就是单纯的遍历然后剪枝,但不知道为什么就双百了 所以分享一下自己的思路: 首先,要求到最近的0的距离,肯定不能单次遍历就能找到准确的值,毕竟信息量过于小 然后,这题很像之前做的那个最大距离(同样也是矩阵遍历BFS),我就想到了应该用类似的思路 之后观察题,很容易想到可以从0开始bfs遍历,当然只向着1去搜索,由于是多源的bfs,所以需要多次遍历 但要注意剪枝,我的一个关键剪枝思路就是把与0不相邻的1都变成-1 然后遍历的时候只需要考察这些-1就好了

# 代码

class Solution {
public int[][] updateMatrix(int[][] matrix) {
        int ylen = matrix.length;
        int xlen=matrix[0].length;
        int count = 0;
        for (int i=0 ;i<ylen; i++) {
            for (int j = 0; j < xlen; j++) {
                if (matrix[i][j] == 0) {
                count++;
                }
                else {
                    if (j > 0 && matrix[i][j - 1] == 0) {
                        count++;
                    }
                    else if (i > 0 && matrix[i - 1][j] == 0) {
                        count++;
                    }
                    else if (j < xlen - 1 && matrix[i][j + 1] == 0) {
                        count++;
                    }
                    else if (i < ylen - 1 && matrix[i + 1][j] == 0) {
                        count++;
                    }
                    else matrix[i][j]=-1;
                }
            }
        }
        int k=1;
        while (count < ylen * xlen) {
            for (int i=0 ;i<ylen; i++) {
                for (int j = 0; j < xlen; j++) {
                    if (matrix[i][j] == -1) {
                        if (j > 0 && matrix[i][j - 1] == k) {
                            matrix[i][j]=k+1;
                            count++;
                        }
                        else if (i > 0 && matrix[i - 1][j] == k) {
                            matrix[i][j]=k+1;
                            count++;
                        }
                        else if (j < xlen - 1 && matrix[i][j + 1] == k) {
                            matrix[i][j]=k+1;
                            count++;
                        }
                        else if (i < ylen - 1 && matrix[i + 1][j] ==k) {
                            matrix[i][j]=k+1;
                            count++;
                        }
                    }
                }
            }
            k++;
        }
        return matrix;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>