该项目是浙江大学地理空间数据库课程作业8:空间分析中,使用 flask + pyecharts 搭建的简单新冠肺炎疫情数据可视化交互分析平台的一部分,完整的实现包含疫情数据获取、态势感知、预测分析、舆情监测等任务;
包含完整代码、数据集和实现的github地址:
https://github.com/yunwei37/COVID-19-NLP-vis
项目分析报告已部署到网页端,可点击http://flask.yunwei123.tech/进行查看,数据已更新到6.17
最终效果:
动态交互展示的世界地图:

除了世界地图还可以动态展示中国地图:(这里就暂时没有录屏啦qwq)

代码实现
由于篇幅限制,这里讨论一下具体的函数实现方式,完整代码可在github中获取:
实现的基本原理是采用ajax方式,通过页面响应向后端flask发送请求,用pyecharts渲染新的地图,然后返回前端进行动态刷新:
先定义一个渲染当前国内确诊人数的函数,返回pyecharts图表:
import time, json
import pandas as pd
from pyecharts.charts import Map
import pyecharts.options as opts
def render_mapcountChina_rate(dateId):
data = pd.read_csv(n)
data = data[data['dateId'] == dateId]
#print(data['currentConfirmedCount'])
list_data = zip(list(data['provinceShortName']), list((data['deadCount']*1000 // data['confirmedCount'])/10))
# [('湖北', 48206), ('广东', 1241), ('河南', 1169), ('浙江', 1145), ..., ('澳门', 10), ('西藏', 1)]
c = (
Map()
.add('', list_data, 'china')
.set_global_opts(
title_opts=opts.TitleOpts(title='全国疫情分布图(死亡率)'+str(dateId)),
visualmap_opts=opts.VisualMapOpts(is_show=True,
spl

本文介绍了使用flask和pyecharts构建的新冠肺炎疫情数据分析平台,包括疫情数据可视化、交互式地图展示。项目包括疫情数据获取、态势感知等功能,提供了完整的代码、数据集和实现链接。通过分析,揭示了疫情的发展趋势和各地确诊、死亡人数的变化情况。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=106554841&d=1&t=3&u=e84261e042424417a058a850cc5c938d)
1055

被折叠的 条评论
为什么被折叠?



