flask + pyecharts 疫情数据分析 搭建交互式动态可视化新冠肺炎疫情地图(附代码实现)

本文介绍了使用flask和pyecharts构建的新冠肺炎疫情数据分析平台,包括疫情数据可视化、交互式地图展示。项目包括疫情数据获取、态势感知等功能,提供了完整的代码、数据集和实现链接。通过分析,揭示了疫情的发展趋势和各地确诊、死亡人数的变化情况。
摘要由CSDN通过智能技术生成

该项目是浙江大学地理空间数据库课程作业8:空间分析中,使用 flask + pyecharts 搭建的简单新冠肺炎疫情数据可视化交互分析平台的一部分,完整的实现包含疫情数据获取、态势感知、预测分析、舆情监测等任务;

包含完整代码、数据集和实现的github地址:
https://github.com/yunwei37/COVID-19-NLP-vis

项目分析报告已部署到网页端,可点击http://flask.yunwei123.tech/进行查看,数据已更新到6.17

最终效果:

动态交互展示的世界地图:
在这里插入图片描述
除了世界地图还可以动态展示中国地图:(这里就暂时没有录屏啦qwq)
在这里插入图片描述

代码实现

由于篇幅限制,这里讨论一下具体的函数实现方式,完整代码可在github中获取:

实现的基本原理是采用ajax方式,通过页面响应向后端flask发送请求,用pyecharts渲染新的地图,然后返回前端进行动态刷新:

先定义一个渲染当前国内确诊人数的函数,返回pyecharts图表:


import time, json
import pandas as pd
from pyecharts.charts import Map
import pyecharts.options as opts

def render_mapcountChina_rate(dateId):
    data = pd.read_csv(n)
    data = data[data['dateId'] == dateId]
    #print(data['currentConfirmedCount'])
    list_data = zip(list(data['provinceShortName']), list((data['deadCount']*1000 // data['confirmedCount'])/10))
    # [('湖北', 48206), ('广东', 1241), ('河南', 1169), ('浙江', 1145), ..., ('澳门', 10), ('西藏', 1)]

    c = (
        Map()
        .add('', list_data, 'china')
        .set_global_opts(
            title_opts=opts.TitleOpts(title='全国疫情分布图(死亡率)'+str(dateId)),
            visualmap_opts=opts.VisualMapOpts(is_show=True,
                                            spl
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值