PAT 1079 延迟的回文数 python

该博客详细介绍了PAT 1079题目的背景及解决方法,即如何将非回文数通过特定操作转化为回文数。文中展示了通过不断逆转并相加的方式,直到得到回文数的过程,并提供了样例输入输出以及问题分析,提醒注意当输入即为回文数的情况。
摘要由CSDN通过智能技术生成

1079 延迟的回文数 (20 分)

给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​​1​​a​​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 且 a​​k​​>0。N 被称为一个回文数,当且仅当对所有 i 有 a​i​​=a​k-i。零也被定义为一个回文数。

非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number

给定任意一个正整数,本题要求你找到其变出的那个回文数。

输入格式:

输入在一行中给出一个不超过1000位的正整数。

输出格式:

对给定的整数,一行一行输出其变出回文数的过程。每行格式如下

A + B = C

其中 A 是原始的数字,BA 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.

输入样例 1:

97152

输出样例 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

输入样例 2:

196

输出样例 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.

问题分析:
2.3.4 测试点出错是由于可能输入的就是回文数,应直接输出

代码:

n1 = input()
for _ in range(10):
    if n1 == n1[::-1]:
        print(n1 + ' is a palindromic number.')
        exit()
    n2 = n1[::-1]
    add = str(int(n1) + int(n2))
    print(n1 + ' + ' + n2 + ' = ' + add)
    n1 = add
else:
    print('Not found in 10 iterations.')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值