1084 外观数列 (20 分)
外观数列是指具有以下特点的整数序列:
d, d1, d111, d113, d11231, d112213111, …
它从不等于 1 的数字 d
开始,序列的第 n+1 项是对第 n 项的描述。比如第 2 项表示第 1 项有 1 个 d
,所以就是 d1
;第 2 项是 1 个 d
(对应 d1
)和 1 个 1(对应 11),所以第 3 项就是d111
。又比如第 4 项是 d113
,其描述就是 1 个 d
,2 个 1,1 个 3,所以下一项就是 d11231
。当然这个定义对 d
= 1 也成立。本题要求你推算任意给定数字 d 的外观数列的第 N 项。
输入格式:
输入第一行给出 [0,9] 范围内的一个整数 d
、以及一个正整数 N(≤ 40),用空格分隔。
输出格式:
在一行中给出数字 d
的外观数列的第 N 项。
输入样例:
1 8
输出样例:
1123123111
作者: CHEN, Yue
单位: 浙江大学
时间限制: 400 ms
内存限制: 64 MB
代码长度限制: 16 KB
问题分析:
判断及循环部分与1078的压缩部分类似,本题稍加修改
代码:
def array(d):
d = d + '?'
tmp = d[0]
rst = ''
ct = 1
for i in d[1:]:
if i == tmp:
ct += 1
else:
if ct == 1:
rst += tmp + '1'
else:
rst += tmp + str(ct)
ct = 1
tmp = i
return rst
d, n = input().split()
for _ in range(int(n) - 1):
d = array(d)
print(d)