题意:给定一个T(2 <= T <= 100)条边的无向图,求S到E恰好经过N(2 <= N <= 1000000)条边的最短路。
用一个矩阵a[i][j]来表示i到j经过若干条边的最短路,初始化a为i到j边的长度,没有则是正无穷。
然后重载*运算符,比如a矩阵表示经过n条边,b矩阵表示经过m条边,那么a * b得到的矩阵表示经过m + n条边,采用Floyd的思想进行更新。
用了快速幂,时间复杂度达到了O(n^3logk),可以通过。
//poj3613
//https://blog.csdn.net/monster__yi/article/details/51069236
#include <cstdio>
#include <cstring>
#include <map>
using namespace std;
int K,n,m,s,t,x,y,z;
map<int,int>mp;
struct Matrix{
int a[205][205];
Matrix operator *(Matrix &r){
Matrix c;
memset(c.a,0x3f,sizeof(c.a));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
c.a[i][j]=min(c.a[i][j],a[i][k]+r.a[k][j]);
return c;
}
}st,ans;
void solve(){
ans=st;K--;
while(K){
if(K&1)ans=ans*st;
st=st*st;
K>>=1;
}
}
int main(){
scanf("%d%d%d%d",&K,&m,&s,&t);
memset(st.a,0x3f,sizeof(st.a));
while(m--){
scanf("%d%d%d",&z,&x,&y);
if(mp[x])x=mp[x];else x=mp[x]=++n;
if(mp[y])y=mp[y];else y=mp[y]=++n;
st.a[x][y]=st.a[y][x]=z;
}
solve();
printf("%d",ans.a[mp[s]][mp[t]]);
return 0;
}

本文介绍了一种利用矩阵乘法和快速幂算法求解无向图中从节点S到节点E,恰好经过N条边的最短路径问题。通过重载矩阵乘法运算符,并结合Floyd算法思想,将时间复杂度优化至O(n^3logk),成功解决了POJ3613问题。
441

被折叠的 条评论
为什么被折叠?



