2019/9/3 网格搜索遇到的问题及原因分析

本文探讨了使用GridSearchCV进行参数调优时遇到的问题,即得到的最佳参数与实际最佳参数不符。问题源于GridSearchCV仅使用训练集进行搜索,而手动调参会考虑测试集的性能。因此,两种方法的最优解可能不一致。作者提出疑问,GridSearchCV的准确率计算方式,并指出理解其工作原理的重要性。
摘要由CSDN通过智能技术生成

GridSearchCV是用来调参的
但是某次发现他调节出来的参数并不是最佳参数。代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
%matplotlib inline

data = load_wine()
X_train,X_test,y_train,y_test = train_test_split(data['data'],data['target'],random_state = 0)

#以下是用GridSearchCV调参:
from sklearn.model_selection import GridSearchCV
knn = KNeighborsClassifier()
gsc = GridSearchCV(knn,param_grid={"n_neighbors":[i for i in range(1,22)]})
gsc.fit(X_train,y_train)
gsc.best_estimator_

结果为:

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=None, n_neighbors=1, p=2,
           weights='uniform')

最佳k值为1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值