7.4 并行连接网路GoogLeNet

由来:吸收了NiN网络的串联网络思想,并在此基础上做了改进
解决的问题:什么样大小的卷积核最合适的问题。使用不同大小的卷积核组合是有利的。

GoogLeNet架构

在这里插入图片描述

GoogLeNet的Inception块的架构

上图中的复杂小块的具体内容如下:
在这里插入图片描述

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
import time
class Inception(nn.Module):
    # c1--c4是每条路径的输出通道数 | **kwargs表示接收任意数量的参数,并以普通字典的方式存储
    def __init__(self,in_channels,c1,c2,c3,c4,**kwargs):
        super(Inception,self).__init__(**kwargs)
        # 线路1,单1x1卷积层
        self.p1_1 = nn.Conv2d(in_channels,c1,kernel_size=1)
        # 线路2,1x1卷基层后接3x3卷积层
        self.p2_1 = nn.Conv2d(in_channels,c2[0],kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0],c2[1],kernel_size=3,padding=1)
        # 线路3,1x1卷积层后接5x5卷积层
        self.p3_1 = nn.Conv2d(in_channels,c3[0],kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0],c3[1],kernel_size=5,padding=2)
        # 线路4,3x3最大汇聚层后接1x1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3,stride=1,padding=1)
        self.p4_2 = nn.Conv2d(in_channels,c4,kernel_size=1)

    def forward(self,x):
        # 1x1卷积层后面都有relu
        p1= F.relu(self.p1_1(x))
        p2= F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3= F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4= F.relu(self.p4_2(self.p4_1(x)))
        # 在通道维度上连结输出
        return torch.cat((p1,p2,p3,p4),dim=1)
# 逐一实现每个模块
# 第一个模块: 一个64通道,7x7的卷积层 (卷积层包含relu和最大池化)
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))

# 第二个模块:1x1的卷积层 和 3x3的卷积层
b2 = nn.Sequential(nn.Conv2d(64,64,kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64,192,kernel_size=3,padding=1),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))

'''第三个模块:由两个Inception堆积而成'''
b3 = nn.Sequential(Inception(in_channels=192,c1=64,c2=(96,128),c3=(16,32),c4=32),
                   # 第一个Inception的四条路径的输出通道汇合成输入通道数:192+64+128+32+32=256
                   Inception(in_channels=256,c1=128,c2=(128,192),c3=(32,96),c4=64),
                   nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

输出结果:

Sequential output shape:	 torch.Size([1, 64, 24, 24])
Sequential output shape:	 torch.Size([1, 192, 12, 12])
Sequential output shape:	 torch.Size([1, 480, 6, 6])
Sequential output shape:	 torch.Size([1, 832, 3, 3])
Sequential output shape:	 torch.Size([1, 1024])
Linear output shape:	 torch.Size([1, 10])

d2l库中的训练函数最后得到的是平均准确率而不是最优的准确率,自己实现一个

def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """Train a model with a GPU (defined in Chapter 6).

    Defined in :numref:`sec_lenet`"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    best_test_acc = 0
    for epoch in range(num_epochs):
        # Sum of training loss, sum of training accuracy, no. of examples
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        if test_acc>best_test_acc:
            best_test_acc = test_acc
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}, best test acc {best_test_acc:.3f}')
    # 取的好像是平均准备率
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')
'''开始计时'''
start_time = time.time()
# 设置参数,训练模型
lr, num_epochs, batch_size = 0.05, 20, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
# d2l自带的训练函数,最后得到的是test_iter是平均的准确率
# d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
# 用自己的训练函数
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

'''计时结束'''
end_time = time.time()
run_time = end_time - start_time
# 将输出的秒数保留两位小数
print(f'{round(run_time,2)}s')

在这里插入图片描述

思考

为什么1x1卷积层后面必有relu函数?

1x1卷积相当于全连接,要激活的。

AlexNet、VGG和NiN的模型参数大小与GoogLeNet相比,后两个网络架构是如何显著减少模型参数大小的?

AlexNet和VGG都有三个全连接层,而NiN用1x1卷积层替换掉了全连接层,GoogLeNet只有一层全连接层。所以显著的减少了模型参数大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

computer_vision_chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值