损失函数总结

均方误差MSE(Mean Square Error)

均方误差(Mean Square Error,MSE)是回归损失函数中最常用的误差,它是预测值f(x)与目标值y之间差值平方和的均值,其公式如下所示:
在这里插入图片描述
下图是均方误差值的曲线分布,其中最小值为预测值为目标值的位置。我们可以看到随着误差的增加损失函数增加的更为迅猛。
在这里插入图片描述

  • 优点:MSE的函数曲线光滑、连续,处处可导,便于使用梯度下降算法,是一种常用的损失函数。
    而且,随着误差的减小,梯度也在减小,这有利于收敛,即使使用固定的学习速率,也能较快的收敛到最小值。

  • 缺点:当真实值y和预测值f(x)的差值大于1时,会放大误差;而当差值小于1时,则会缩小误差,这是平方运算决定的。MSE对于较大的误差(>1)给予较大的惩罚,较小的误差(<1)给予较小的惩罚。也就是说,对离群点比较敏感,受其影响较大。

如果样本中存在离群点,MSE会给离群点更高的权重,这就会牺牲其他正常点数据的预测效果,最终降低整体的模型性能。 如下图:
在这里插入图片描述

可见,使用 MSE 损失函数,受离群点的影响较大,虽然样本中只有 5 个离群点,但是拟合的直线还是比较偏向于离群点。

平均绝对误差MAE

在这里插入图片描述

1.3 MSE与MAE的选择

在这里插入图片描述

原文链接:https://blog.csdn.net/Xiaobai_rabbit0/article/details/111032136

binary Cross-Entropy 损失函数

二元交叉熵(Binary Cross-Entropy)是一种常用于机器学习和深度学习中的损失函数,通常用于二分类问题,即将数据分为两个类别的问题,如正类和负类。该损失函数通常用于训练二分类模型,例如逻辑回归或神经网络中的输出层。

Binary Cross-Entropy 的数学定义如下:

如果 y 是真实标签(通常是0或1),而 p 是模型预测的概率(通常在0到1之间),则二元交叉熵损失可以表示为:

L(y, p) = -[y * log(p) + (1 - y) * log(1 - p)]

其中:

  • y 是真实标签,可以是0或1。
  • p 是模型预测的概率,表示样本属于正类的概率。
  • log 表示自然对数。
    • 表示取负号,这是因为我们通常要最小化这个损失函数,而不是最大化。

如果模型的预测与真实标签一致,损失将接近零。如果模型的预测与真实标签相反,损失将迅速增加。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

computer_vision_chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值