qq_42894217
码龄6年
关注
提问 私信
  • 博客:2,472
    社区:1
    动态:9
    2,482
    总访问量
  • 1
    原创
  • 206,747
    排名
  • 15
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2018-08-06
博客简介:

qq_42894217的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    36
    当月
    1
个人成就
  • 获得14次点赞
  • 内容获得0次评论
  • 获得55次收藏
  • 代码片获得857次分享
创作历程
  • 1篇
    2024年
成就勋章
TA的专栏
  • 病理图像分析
    1篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习自然语言处理图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

一个全自动病理处理分析工具——CLAM

CLAM是一种基于深度学习的数据高效、弱监督的全幻灯片(WSI)级的全自动分析工具, 是一种高通量且可解释的方法,使用WSI级标签对整个WSI图像 进行数据高效分类,可自动识别WSI中的组织区域,并提取patch坐标,并自动提取patch级别的特征,但并不真正对patch进行提取和保存,减少计算资源的消耗和内存的占用,可在无需进行ROI标注或者patch级别标签的情况下,基于注意力机制和多示例学习自动识别具有高诊断价值的patch,进而实现整个WSI的实例级别分类。
原创
发布博客 2024.07.19 ·
2465 阅读 ·
14 点赞 ·
0 评论 ·
55 收藏