机器人阻抗控制(二)

本文深入探讨了机器人阻抗控制,介绍了具有外部输入力矩的任务空间动力学方程,并提出经典阻抗控制器的设计。同时,面对无法测量的外部输入力,文章提出了柔顺控制策略,确保机器人在与环境交互时的被动性。
摘要由CSDN通过智能技术生成

#阻抗控制 #机器人控制 #动力学方程
《Cartesian Impedance Control of Redundant and Flexible-Joint Robots》

![[Attachments/Pasted image 20230318140840.png]]

One of the core statements of the impedance control methodology is that the controller should modulate the mechanical impedance4 of the manipulator.

具有外部输入力矩的任务空间动力学方程

根据[[力、运动-力混合控制#关节空间中的动力学方程|关节空间机器人动力学方程]](不考虑关节柔性与关节阻尼):
M ( q ) q ¨ + C ( q , q ˙ ) q ˙ + g ( q ) = τ + τ e x t (1) \boldsymbol{M}(\boldsymbol{q})\ddot{\boldsymbol{q}}+\boldsymbol{C}(\boldsymbol{q},\dot{\boldsymbol{q}})\dot{\boldsymbol{q}}+\boldsymbol{g}(\boldsymbol{q})=\boldsymbol{\tau }+\boldsymbol{\tau }_{ext} \tag{1} M(q)q¨+C(q,q˙)q˙+g(q)=τ+τext(1)
式中, τ e x t \boldsymbol{\tau }_{ext} τext表示外部力矩向量。
根据[[开链机器人的静力学#1. 雅可比矩阵|雅可比矩阵]]定义可知,末端位姿与关节角之间的[[阻抗控制(一)#阻抗控制算法|微分运动关系]]为:
x ˙ = ∂ f ( q ) ∂ q q ˙ = J ( q ) q ˙ x ¨ = J ( q ) q ¨ + J ˙ ( q ) q ˙ (2) \begin{aligned} \dot{\boldsymbol{x}}&=\frac{\partial \boldsymbol{f}\left( \boldsymbol{q} \right)}{\partial \boldsymbol{q}}\dot{\boldsymbol{q}}=\boldsymbol{J}\left( \boldsymbol{q} \right) \dot{\boldsymbol{q}}\\ \ddot{\boldsymbol{x}}&=\boldsymbol{J}\left( \boldsymbol{q} \right) \ddot{\boldsymbol{q}}+\dot{\boldsymbol{J}}\left( \boldsymbol{q} \right) \dot{\boldsymbol{q}}\\ \end{aligned} \tag{2} x˙x¨=qf(q)q˙=J(q)q˙=J(q)q¨+J˙(q)q˙(2)

根据式(2)可知, q ˙ = J − 1 ( q ) x ˙ \dot{\boldsymbol{q}}=\boldsymbol{J}^{-1}\left( \boldsymbol{q} \right) \dot{\boldsymbol{x}} q˙=J1(q)x˙ q ¨ = J − 1 ( q ) [ x ¨ − J ˙ ( q ) q ˙ ] \ddot{\boldsymbol{q}}=\boldsymbol{J}^{-1}\left( \boldsymbol{q} \right) \left[ \ddot{\boldsymbol{x}}-\dot{\boldsymbol{J}}\left( \boldsymbol{q} \right) \dot{\boldsymbol{q}} \right] q¨=J1(q)[x¨J˙(q)q˙],将其带入式(1),并考虑到 τ e x t = J − T ( q ) F e x t \boldsymbol{\tau }_{ext}=\boldsymbol{J}^{-T}\left( \boldsymbol{q} \right) \boldsymbol{F}_{ext} τext=JT(q)Fext,可以得到[[开链机器人的静力学#3. 开链机器人的静力学|任务空间的动力学方程]],
M ( q ) J − 1 ( q ) ( x ¨ − J ˙ ( q ) q ˙ ) + C ( q , q ˙ ) J − 1 ( q ) x ˙ + g ( q ) = τ + J T ( q ) F e x t ⇒ J − T ( q ) M ( q ) J − 1 ( q ) ( x ¨ − J ˙ ( q ) q ˙ ) + J − T ( q ) C ( q , q ˙ ) J − 1 ( q ) x ˙ + J − T ( q ) g ( q ) = J − T ( q ) τ + F e x t ⇒ J − T ( q ) M ( q ) J − 1 ( q ) x ¨ + J − T ( q ) C ( q , q ˙ ) J − 1 ( q ) x ˙ − J − T ( q ) M ( q ) J − 1 ( q ) J ˙ ( q ) J − 1 ( q ) x ˙ + J − T ( q ) g ( q ) = J − T ( q ) τ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值