数学建模理论自制笔记2:差分方程及其模型

1、差分方程基础概念:

  • 差分:这里的差分常指向前差分,即对于数列\left \{x_n \right \},差分算子\Delta :\Delta x_n=x_{n+1}-x_n为在n处的向前差分;向后差分即是指:\Delta x_n=x_{n}-x_{n-1}
  • n处的k阶差分:\Delta ^{k}x_n=\Delta \left ( ^{k-1}\left ( x_n \right ) \right );其中在n处的2阶差分为\Delta ^{2}x_n=\Delta \left ( \Delta x_n \right ),反映的是增量的增量;
  • 差分方程:x_n以及差分\Delta x_n,\Delta ^{2}x_n,\cdots所构成的方程,比如k阶差分方程形式为\Delta ^{k}x_n=f\left ( n,x_n,\Delta x_n,\cdots ,\Delta ^{k-1}x_n \right ),其中这个方程可以化为x_{n+k}=F\left ( n,x_n,x_{n+1},\cdots ,x_{n+k-1} \right ),而这种形式是我们经常用的差分形式,线性差分方程的一般形式可以写成:g(n)=p_{k(n)}x_{n+k}+p_{k-1(n)}x_{n+k-1}+\cdots +p_{0(n)}x_{n}=\sum_{i=0}^{k}p_{i(n)}x_{n+i}
  • 齐次线性差分方程:线性差分方程式子里g(n)\equiv 0
  • 常系数线性差分方程:线性差分方程式子里p_{i(n)}均为常数c_i
  • 差分方程的:使k阶差分方程对所有的n都成立的x_n
  • 差分方程的平衡解/平衡点:若常数\overline{x}x_n的解,那x_n=\overline{x}也就是差分方程的平衡解;
  • 差分算子的性质:
    • \Delta \left ( \alpha x_n+\beta y_n \right )=\alpha \Delta \left ( x_n \right )+\beta \Delta y_n
    • \Delta \left ( x_ny_n \right )=y_{n+1}\Delta x_n+x_n\Delta y_n=x_{n+1}y_{n+1}-x_ny_n
    • \Delta \left ( \frac{x_n}{y_n} \right )=\frac{x_{n+1}}{y_{n+1}}-\frac{x_n}{y_n}=\frac{y_n\Delta x_n-x_n\Delta y_n}{y_{n+1}y_n}

2、简单常系数线性微分方程的解:

  1. 一阶常系数线性微分方程:x_{n+1}-ax_n=g(n)
    1. g(n)=0时:易知通解x_n=x_0a^n
    2. g(n)=cb^n时:有特解x=\left\{\begin{matrix} kb^n & b\neq a\\ knb^n & b=a \end{matrix}\right.(其中k为待定系数,对应的方程可以求出该值),那么通解为x_n=x_0a^n+\left\{\begin{matrix} kb^n & b\neq a\\ knb^n & b=a \end{matrix}\right.(即1中的通解+2中的特解);比如x_{n+1}-2x_n=2^n的通解为:x_n=\left ( x_0 +\frac{1}{2}n\right )2^n(其中求出k=\frac{1}{2});
    3. g(n)=\sum b_mn^m时:有特解x=\left\{\begin{matrix} \sum B_mn^m & a\neq 1 \\ n\left ( \sum B_mn^m \right ) & a=1 \end{matrix}\right.(其中B_m为待定系数,对应的方程可以求出该值),那么通解为x_n=x_0a^n+\left\{\begin{matrix} \sum B_mn^m & a\neq 1 \\ n\left ( \sum B_mn^m \right ) & a=1 \end{matrix}\right.(即1中的通解+2中的特解); 比如x_{n+1}-2x_n=n+1的通解为:x_n=x_02^n-n-2(其中求出B_1=-1,B_0=-2); 
  2. 二阶常系数线性微分方程:x_{n+2}+ax_{n+1}+bx_n=g(n)

    1. g(n)=0时:得到对应的特征方程为\lambda ^2+a\lambda +b=0,若存在实根\lambda _1,\lambda _2,则方程的特解和实根的情况相对应:x_n=\left\{\begin{matrix} c_1\lambda _{1}^{n}+c_2\lambda _{2}^{n} & \Delta =a^2-4b> 0\\ \left (c_1+c_2n \right )\lambda _{1}^{n} & \Delta =a^2-4b=0 \end{matrix}\right.;比如x_{n+2}+3x_{n+1}+2x_n=0的通解为:x_n=(-1)^n\left ( c_1+2^nc_2 \right )

    2. g(n)=cd^n时:有特解x=\left\{\begin{matrix} kd^n & \lambda _1\neq d,\lambda _2\neq d\\ knd^n & \lambda _1\neq \lambda _2=d \textup{ or } \lambda _2\neq \lambda _1=d\\ kn^2d^n & \lambda _1=\lambda _2=d \end{matrix}\right.(其中k为待定系数,对应的方程可以求出该值),那么通解为x_n=\left\{\begin{matrix} c_1\lambda _{1}^{n}+c_2\lambda _{2}^{n} & \Delta =a^2-4b> 0\\ \left (c_1+c_2n \right )\lambda _{1}^{n} & \Delta =a^2-4b=0 \end{matrix}\right.+\left\{\begin{matrix} kd^n & \lambda _1\neq d,\lambda _2\neq d\\ knd^n & \lambda _1\neq \lambda _2=d \textup{ or } \lambda _2\neq \lambda _1=d\\ kn^2d^n & \lambda _1=\lambda _2=d \end{matrix}\right.(即1中的通解+2中的特解);比如x_{n+2}+3x_{n+1}+2x_n=2^n的通解为:x_n=(-1)^n\left ( c_1+2^nc_2 \right )+\frac{1}{3}2^{n-2}(其中求出k=\frac{1}{12});

    3.  当g(n)=\sum d_mn^m时:有特解x=\left\{\begin{matrix} \sum D_mn^m & a+b\neq 0 \\ n\left ( \sum D_mn^m \right ) & a+b=0,a\neq -2\\ n^2\left ( \sum D_mn^m \right ) & a=-2,b=1 \end{matrix}\right.(其中D_m为待定系数,对应的方程可以求出该值),那么通解为x_n=\left\{\begin{matrix} c_1\lambda _{1}^{n}+c_2\lambda _{2}^{n} & \Delta =a^2-4b> 0\\ \left (c_1+c_2n \right )\lambda _{1}^{n} & \Delta =a^2-4b=0 \end{matrix}\right.+\left\{\begin{matrix} \sum D_mn^m & a+b\neq 0 \\ n\left ( \sum D_mn^m \right ) & a+b=0,a\neq -2\\ n^2\left ( \sum D_mn^m \right ) & a=-2,b=1 \end{matrix}\right.;(即1中的通解+3中的特解);比如x_{n+2}+3x_{n+1}+2x_n=n+1的通解为:x_n=(-1)^n\left ( c_1+2^nc_2 \right )+\frac{1}{6}n+\frac{1}{36}(其中求出D_1=\frac{1}{6},D_0=\frac{1}{36}); 

3、差分方程建模的步骤:

  1. 设定好实际问题中的未知函数,按照已知的相关学科的规律来建立相邻的自变量的未知函数取值间的依赖关系,从而建立差分方程模型;
  2. 对上述建立的差分方程模型,若能直接求解的则求出其解,若不能直接求解的或者直接求解比较困难的,则用定性的方法讨论其解的性质;
  3. 对解得的模型结果与实际情形加以对照,进行讨论。

4、差分方程建模模型举例:

  • 银行存款与利率模型:假如你在银行开设了一个1000元的存款账户,银行的年利率为7%。a_n表示n年后你账户上的存款额,那么下面的数列就是你每年的存款额:a_0,a_1,a_2,\cdots ,a_n,\cdots
    • r为年利率,由于a_{n+1}=(1+r)a_n,因此存款问题的数学模型是:a_0=1000,r=7%,a_{n+1}=(1+r)a_n,n=0,1,2,\cdots
    • 很明显该方程为一阶齐次常系数线性微分方程,解得a_n=1000\cdot 1.07^n
  • 家庭教育基金模型:1994年开始,我国逐步实行了大学收费制度为了保障子女将来的教育费用,小张夫妇从他们的儿子出生时开始,每年向银行存入x元作为家庭教育基金若银行的年利率为r,试写出第n年后教育基金总额的表达式预计当子女18岁入大学时所需的费用为100000元,按年利率3%计算,小张夫妇每年应向银行存入多少元
    • n年后教育基金总额为a_n,每年向银行存入x元,依据复利率计算公式,得到家庭教育基金的数学模型为:a_0=x,a_{n+1}=(1+r)a_n+x,n=0,1,2,\cdots​​​​​​​;
    • 该方程为一阶常系数线性微分方程,解得a_n=\frac{x[(1+r)^{n+1}-1]}{r};这里我们需要求出x,则化为x=\frac{ra_n}{(1+r)^{n+1}-1};代入a_{18}=10^5,r=0.03,n=18,则x=3981.39
  • 抵押贷款模型:小李夫妇要购买二居室住房一套,共需30万元他们已经筹集10万元,另外20万元申请抵押贷款若贷款月利率为0.6%,还贷期限为20年,问小李夫妇每月要还多少钱?
    • ​​​​​​​​​​​​​​设贷款额为a_0,每月还贷额为x,月利率为r,第n个月后的欠款额为a_n,则a_0=2\times 10^5,\left\{\begin{matrix} a_1=(1+r)a_0-x\\ a_2=(1+r)a_1-x\\ \cdots \cdots \\ a_{n}=(1+r)a_{n-1}-x \end{matrix}\right. ,n=1,2,\cdots
    • 该方程为一阶常系数线性微分方程,解得a_n=a_0(1+r)^n-\frac{x[(1+r)^{n+1}-1]}{r}若在第N个月还清贷款,令a_N=0,则x=\frac{a_0r(1+r)^N}{(1+r)^N-1};代入a_0=2\times 10^5,r=0.006,N=20\times 12=240,则x=1574.7

参考资料:

差分方程基本理论 - 知乎 (zhihu.com)

  • 0
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值