什么是缓存一致性问题?如何解决呢?

本文深入探讨了多线程环境下缓存一致性问题的产生原因,以及两种常见的解决方案:总线加LOCK锁和缓存一致性协议。通过具体示例,解释了缓存不一致可能导致的数据错误,并介绍了缓存一致性协议如何确保多CPU间共享变量的一致性。
部署运行你感兴趣的模型镜像

当程序在运行过程中,会将运算需要的数据从主存复制一份到CPU高速缓存中,那么CPU进行计算时就可以从它的高速缓存读取数据和向其中写入数据,当运算结束后,再将高速缓存中的数据刷新到主存当中。举个简单的例子,比如下面的这段代码:

当线程执行这个语句时,会先从主存当中读取i的值,然后复制一份到高速缓存当中,然后CPU执行指令对i指令进行加1操作,然后将数据写入高速缓存,最后将高速缓存中i最新的值刷新到主存当中。

这个代码在单线程中运行时没有任何问题的,但是在多线程中运行就会有问题了。在多核CPU中,每条线程可能运行于不同的CPU中,因此每个线程运行时有自己的高速缓存(对单核CPU来说,其实也会出现这种问题,只不过是以线程调度的形式来分别执行的)。我们以多核CPU为例。

比如同时有两个线程执行这段代码,假如初始时i的值为0,那么我们希望两个线程执行完之后i的值变为2。但事实会是这样吗?

可能存在下面一种情况:初始时,两个线程分别读取i的值存入各自所在的CPU的高速缓存当中,然后线程1进行加1操作,然后把i的最新值1写入到内存。此时线程2的高速缓存当中i的值还是0,进行加1操作后,i的值为1,然后线程2把i的值写入内存。

最终结果i的值是1,而不是2。这就是著名的缓存一致性问题。通常称这种被多个线程访问的变量为共享变量。

也就是说,如果一个变量在多个CPU中都存在缓存(一般在多线程编程时才会出现),那么就可能存在缓存不一致的问题。

为了解决缓存不一致问题,通常来说有以下2种解决方法:

1)通过在总线加LOCK,锁的方式;

2)通过缓存一致性协议

在早期的CPU中,是通过在总线上加LOCK锁的形式来解决缓存不一致的问题。因为CPU和其他部件进行通信都是通过总线来进行的,如果对总线加LOCK锁的话,也就是说阻塞了其他CPU对其它部件访问(如内存),从而使得只能有一个CPU能使用这个变量的内存。比如上面例子中,如果一个线程在执行i = i +1,如果在执行这段代码的过程中,在总线上发出了LOCK锁的信号,那么只有等待这段代码完全执行完毕之后,其他CPU才能从变量i所在的内存读取变量,然后进行相应的操作。这样就解决了缓存不一致的问题。

但是上面的方式会有一个问题,由于在锁住总线期间,其他CPU无法访问内存,导致效率低下。

所以就出现了缓存一致性协议。该协议保证了每个缓存中使用的共享变量的副本是一致的。它的核心思想是:当CPU向内存写入数据时,如果发现操作的变量是共享变量,即在其他CPU中也存在该变量的副本,会发出信号通知其他CPU将该变量的缓存行置为无效状态,因此当其他CPU需要读取这个变量时,发现自己缓存中缓存该变量的缓存是无效的,那么它就会从内存重新读取。

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值